
Report from Dagstuhl Seminar 24261

Computational Creativity for Game Development
Edited by
Duygu Cakmak1, Setareh Maghsudi2, Diego Perez Liebana3, and
Pieter Spronck4

1 Creative Assembly - Horsham, GB, duygucakmak@gmail.com
2 Ruhr-Universität Bochum, DE, setareh.maghsudi@rub.de
3 Queen Mary University of London, GB, diego.perez@qmul.ac.uk
4 Tilburg University, NL, p.spronck@gmail.com

Abstract
Developments in artificial intelligence are currently dominated by deep neural networks, trained
on large data sets, which excel at pattern recognition. Variants of the “classic” deep neural
networks have the ability to generate new data with statistical properties similar to the training
set. Despite the impressive products of such creative artificial intelligence, the results are usually
lacking in meaning. They contain mistakes that humans would avoid, and often produce content
which is not functional. While the product of creative artificial intelligence can be used as a strong
basis for humans to build upon, human intelligence and human creativity are almost always a
necessary ingredient of the creative process. Moreover, the more relevant the meaning, purpose,
and functionality of the product are, the less the creative process benefits from the involvement
of artificial intelligence.

Game design and implementation are tasks which require a high amount of creativity, and
which must lead to products which require a high amount of fine-tuned functionality. For example,
a game “level” should not only look appealing, it should also be playable and it should be
interesting to play. These are not features which can be acquired simply by “training on big data,”
which is what most developments in modern artificial intelligence are based on.

This report on the Dagstuhl seminar 24261 discusses to what extent modern artificial intelli-
gence techniques can produce meaningful and functional game content.

Seminar June 23–28, 2024 – http://www.dagstuhl.de/24261
2012 ACM Subject Classification AI - Artificial Intelligence, HC - Human-Computer Interaction,

MM - Multimedia
Keywords and phrases artificial intelligence, computational creativity, computational intelligence,

game design, game development
Digital Object Identifier 10.4230/DagRep.14.6.1
Edited in cooperation with Spronck, Pieter

1 Executive Summary

Pieter Spronck (Tilburg University, NL)
Duygu Cakmak (Creative Assembly - Horsham, GB)
Setareh Maghsudi (Ruhr-Universität Bochum, DE)
Diego Perez Liebana (Queen Mary University of London, GB)

License Creative Commons BY 3.0 Unported license
© Pieter Spronck, Duygu Cakmak, Setareh Maghsudi, and Diego Perez Liebana

Developments in artificial intelligence are currently dominated by the deep learning technology,
which generates deep neural networks, trained on large data sets, which excel at pattern

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Computational Creativity for Game Development, Dagstuhl Reports, Vol. 14, Issue 06, pp. 1–82
Editors: Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/24261
http://dx.doi.org/10.4230/DagRep.14.6.1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

2 24261 – Computational Creativity for Game Development

recognition. Variants of the “classic” deep neural networks have the ability to generate
new data with statistical properties similar to the training set. Generative Adversarial
Networks (GANs), such as used by DALL-E and Midjourney, may be used to generate
original visual artworks based on a textual description of the desired output. Autoregressive
language models, such as used by ChatGPT, use deep learning to produce text that is
often indistinguishable from human-created text. Moreover, artificial intelligence techniques
have been used to successfully generate music for many years, and researchers have also
experimented with using deep learning to create cooking recipes, personalized fragrances,
fashion, and more.

Despite the sometimes astonishing products of such creative artificial intelligence, the
results are usually lacking in meaning. While DALL-E and Midjourney produce images
that seem impressive, upon further inspection they contain many mistakes which humans
would avoid. While ChatGPT can generate human-sounding text in a conversation, it often
produces utter nonsense, and cannot write an original coherent story. And, as our own
explorations of such techniques during Dagstuhl Seminar 22251 showed, GANs may produce
computer game content which looks reasonable at first glance, but is ultimately neither
functional nor playable.

While the product of creative artificial intelligence can often be used as a strong basis for
humans to build upon, and may as such speed up the creative process, human intelligence and
human creativity are almost always a necessary ingredient of the creative process. Moreover,
the more relevant the meaning, purpose, and functionality of the product are, the less the
creative process benefits from the involvement of artificial intelligence.

Game design and implementation are tasks which require a high amount of creativity,
and which must lead to products which require a high amount of fine-tuned functionality.
For example, a game “level” should not only look appealing, it should also be playable (i.e.,
it must be possible for most players to finish the level) and it should be interesting to play
(i.e., the player should feel entertained by playing the level and should experience inherent
motivation to finish the level). These are not features which can be acquired simply by
“training on big data,” which is what most developments in modern artificial intelligence are
based on.

The goal of Dagstuhl Seminar 24261, Computational Creativity for Game Development,
was to investigate to what extent modern artificial intelligence techniques can produce
meaningful and functional game content, and what changes to or extensions of these techniques
can improve this AI-driven creative process.

We like to point out that progress in this area is relevant for a wide range of applications
outside the “games” domain. Creativity in artificial intelligence applies to many branches
of industry and has a strong impact on society, in which artificially intelligent technology
interacts with humans in many shapes and forms. We use games in our research because they
are highly-complex but well-defined applications which form safe environments to experiment
in. However, solutions found for creative problems in games are often transferable to domains
outside games.

The research area lends itself for a wide range of research topics. For the preparation of
this seminar, we proposed the following set of sub-topics (many of which were taken up by
workgroups):

Procedural Content Generation for Games: Procedural Content Generation (PCG)
systems include techniques and methods able to create different type of game elements,
such as levels, rules, quests and characters, among many others. Research in PCG has
been prolific in the last decade, but its presence in the games industry is still far from

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 3

ubiquitous. A particular interest is set on mixed-initiative systems, which give designers
and artist authorial control of the created content and the direction of the algorithm that
generates it.
Procedural Generation of Games: An extension of the previous point that deserves
its own separate area is the generation of complete games. Same as recent advances
in generative systems for music, painting and long bodies of text, one can research
how complete games can be generated from scratch. This includes elements like art,
rules, characters, winning and losing conditions that normally form a game. Automatic
generation of new mini-games can open an interesting space of research that merges
multiple advances together, but also a useful tool for game designers that will be able to
use the generated games as inspiration for new entertainment experiences.
Computational Creativity for Narrative Games: A particular type of games that
have become more popular in the last decade is that of narrative games. While there
has been some work in using Computational Creativity methods to generate texts, the
adaptation of these techniques to the game development process remains an open area
for research.
Automatic Generation of Art in Games: Art is an important part of digital games
and takes multiple forms: 3D-models, textures, visual effects, animations, cut-scenes, and
so on. Lately, multiple advances on the use of Computational Creativity have shown
the capacity of generating different forms of art, such as images, videos and even 3D
geometries. Examples of systems that generate art are DALL-E, Stable Diffusion, and
Midjourney. Research can explore how these and other techniques can be used to generate
art for games, including unexplored game art areas, in particular with regards to how this
generation can be bound to specific games/genres/restrictions, how can it be integrated
into the game development process, and how can we give designers authorial control and
modification capabilities over the generated assets.
Procedural Generation of Audio for Games: An important part of automatic
generation of content refers to audio. From audio effects (footsteps, heartbeats, weather)
to complete sound tracks (background music, melodies, singers), including the generation
of different voices for human and non-human game characters, the space for computational
creativity to generate this type of art is vast.
Computational Creativity for Game Playing: An unexplored aspect and application
of Computational Creativity is that of generating AI agents that play a game. Traditionally,
the objective that leads AI agents in a game to play is to achieve victory, either by reaching
a winning state or by maximizing the score they obtain in the game. Some efforts have been
made to employ quality-diversity methods to generate different styles of play. Research
may explore how can we harness the new developments in Computational Creativity to
generate diverse play styles, including the generation of new strategies or tactics to play
games in a different manner.
Computational Creativity for Affective Computing: Affective computing is a
discipline that bridges several domains, such as computer science, cognitive science, and
psychology. It studies the implementation of systems that are able to express, identify,
process and simulate human affects. Research may investigate computational creativity
algorithms and methods to provide non-player characters with the possibility of expressing
feeling and emotions in a convincing way. This includes, for example, facial expressions
and body animations, and it can be applied to human or non-human characters.
Automatic Support of Game Development: Traditionally, computational creativity
and the automatic generation methods have focused their efforts on generating the

24261

4 24261 – Computational Creativity for Game Development

product that creative industries build – be this games (or content for games), art or
music, among others. These methods may also be used to aid the process of game
development. Examples of the application of this technology include computational
creativity for automation of tasks, algorithms for automatic testing of development
process (such as code, integration, animations and deployment), production chains and
procedural development processes.
Ethical Considerations of Computational Creativity: The ethical challenges of
using computationally creative tools for applications such as game development should
not be ignored. The use of automatically-creative tools may have negative effects on
the need for artists and designers. Moreover, the automatic creation of games and game
content may lead to ethically suspect products. Finally, biases that exist in art and data
may be magnified when such products are used to automatically generate new products.
These ethical considerations will be taken into account in all our explorations of advances
in computational creativity.

More than a year-and-a-half passed between writing the proposal and running the seminar.
We found it striking how many advancements had been made in the area of Computational
Creativity for Games in that period. During the writing of the proposal we were personally
convinced that we were proposing an important theme for the seminar. When the seminar
took place, we knew that no other theme was this topical.

This seminar was organized around workgroups, which worked in teams and topics
proposed by the participants of the seminar in the areas outlined above. These workgroups
were accompanied by plenary sessions for group formation, topic debate and discussions
of the deliberation of each group. Workgroups were dynamic, so participants could move
between them, and new groups were formed during the week.

A Discord server was set up for coordination and announcements, and it was also used
by the different groups for document and link sharing. This also has the benefit of providing
a place for discussions after the seminar, easing the communication and further work among
the members of each workgroup.

42 participants accepted our invitation to join the seminar; 40 of them attended. The
participants were a good mixture of genders, countries of origin, junior and senior people,
and people from academics and from industry. All participants engaged intensively with the
seminar, and many expressed how happy they were with what we accomplished, making the
seminar a great success.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 5

2 Table of Contents

Executive Summary
Pieter Spronck, Duygu Cakmak, Setareh Maghsudi, and Diego Perez Liebana . . . 1

Working groups
AI for Voice Generation from Text
Maren Awiszus, Filippo Carnovalini, and Pieter Spronck 6

Meaningful Acoustics for Board Games
Filippo Carnovalini, Greta Hoffmann, Chengpeng Hu, Leonie Kallabis, Matthias
Müller-Brockhausen, and Mike Preuß . 9

Roguelike in a Day
M Charity, Alex J. Champandard, David Melhart, and Matthias Müller-Brockhausen 12

AI for Romantic Comedies II
Michael Cook, Gabriella A. B. Barros, Alena Denisova, Ahmed Khalifa, Antonios
Liapis, Johanna Pirker, Emily Short, Gillian Smith, Anne Sullivan, and Tommy
Thompson . 15

AI for Speedrunning
Michael Cook, Maren Awiszus, Filippo Carnovalini, M Charity, and Alexander
Dockhorn . 17

Skill-Discovery in (Strategy) Games
Alexander Dockhorn, Manuel Eberhardinger, Chengpeng Hu, and Matthias Müller-
Brockhausen . 20

Introducing AI Experience: Games UX in the Age of Generative AI
Anders Drachen, Paolo Burelli, Leonie Kallabis, and David Melhart 24

LLM-based Program Search for Games
Manuel Eberhardinger, Duygu Cakmak, Alexander Dockhorn, Raluca D. Gaina,
James Goodman, Amy K. Hoover, Simon M. Lucas, Setareh Maghsudi, and Diego
Perez Liebana . 26

Computational Creativity for Game Production: What Should Be Left Untouched?
Christian Guckelsberger, João Miguel Cunha, Alena Denisova, Setareh Maghsudi,
Pieter Spronck, and Vanessa Volz . 36

Personal AcCompanion AI
Greta Hoffmann, João Miguel Cunha, Chengpeng Hu, Leonie Kallabis, and Pieter
Spronck . 38

Game Asset Generation
Leonie Kallabis, Chengpeng Hu, and Matthias Müller-Brockhausen 43

Communal Computational Creativity
Antonios Liapis, Alex J. Champandard, João Miguel Cunha, Christian Guckelsberger,
Setareh Maghsudi, David Melhart, Johanna Pirker, Emily Short, Hendrik Skubch,
Tristan Smith, Tommy Thompson, and Vanessa Volz 45

Distance and Density in Various Spaces
Simon M. Lucas, Duygu Cakmak, Filippo Carnovalini, M Charity, Amy K. Hoover,
Ahmed Khalifa, Setareh Maghsudi, and Vanessa Volz 50

24261

6 24261 – Computational Creativity for Game Development

Sub-optimal Bots
David Melhart, James Goodman, Christian Guckelsberger, Greta Hoffmann, and
Diego Perez Liebana . 55

Arts & Crafts & Generative AI
Mirjam Palosaari Eladhari, Gabriella A. B. Barros, Alena Denisova, Amy K.
Hoover, Chengpeng Hu, Leonie Kallabis, Ahmed Khalifa, Matthias Müller-Brockhausen,
Gillian Smith, and Anne Sullivan . 59

Small Data Sets for Designers and Artists
Mirjam Palosaari Eladhari, Gabriella A. B. Barros, Amy K. Hoover, and Ahmed
Khalifa . 65

Evaluating the Generative Space of Procedural Narrative Generators
Emily Short, Gabriella A. B. Barros, Alex J. Champandard, Michael Cook, João
Miguel Cunha, Alena Denisova, Antonios Liapis, Mirjam Palosaari Eladhari, Jo-
hanna Pirker, Gillian Smith, Anne Sullivan, and Tommy Thompson 69

Generative Space Analysis for Procedural Narrative Generation
Emily Short, Gabriella A. B. Barros, Michael Cook, Gillian Smith, Tristan Smith,
Anne Sullivan, and Tommy Thompson . 70

Meaningful Computational Narratives
Pieter Spronck, Maren Awiszus, Gwaredd Mountain, Mike Preuß, Hendrik Skubch,
Tristan Smith, and Tony Veale . 72

Small, Safe LLMs for In-Game Generation
Tony Veale, Paolo Burelli, Amy K. Hoover, Antonios Liapis, Gwaredd Mountain,
and Hendrik Skubch . 75

Transferability of Game AI
Vanessa Volz, João Miguel Cunha, and Tristan Smith 77

Panel discussions
Discussion
Pieter Spronck, Duygu Cakmak, Setareh Maghsudi, and Diego Perez Liebana . . . 80

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 7

3 Working groups

3.1 AI for Voice Generation from Text
Maren Awiszus (Viscom AG - Hannover, DE), Filippo Carnovalini (VU - Brussels, BE),
and Pieter Spronck (Tilburg University, NL)

License Creative Commons BY 3.0 Unported license
© Maren Awiszus, Filippo Carnovalini, and Pieter Spronck

Joint work of Betker, James; Wang, Z. et al.
Main reference "James Betker. Better speech synthesis through scaling. arXiv, 2305.07243, 2023"

URL https://arxiv.org/abs/2305.07243

Generative AI has proven more sophisticated over the last year, and this also includes speech
synthesis. The quality of both Text-to-Speech (TTS) and Voice-to-Voice Conversion is now
high enough that it can feasibly be used in commercial products. Services such as Elevenlabs1

boast with generative voices using audio samples as short as 1 minute, and going up to 3
hours for the best quality. Such voice synthesis can be very useful in the context of games,
for example, it would allow for a cheaper alternative to full voice acting, especially for smaller
studios which otherwise couldn’t afford it. Voice Conversion allows to convert from one voice
sound to another, which could allow a game to have diverse voices for different characters,
even though they have been spoken only by one person, or a TTS generator. This is especially
interesting for customizable Player Characters, which usually do not have a voice actor
attached due to the sheer number of possible options for their voice and dialogue options.
Voiceover is also important for the visually impaired and a good, natural sounding narration
would allow more people to experience otherwise completely text-based games. Lastly, games
that want to procedurally generate their text, for example using Large Language Models
(LLMs), by design can not be voice acted in any other way, other than procedurally. This
also applies to user text input which could be actually voiced using a generative method.

Of course, using generative voice for the described applications comes with downsides.
If AI Voice Acting is used in projects, which could reasonably have hired real voice actors,
those actors have lost that income and, in the long run, fewer voice actors could be employed.
Additionally, the generated voices are still not of the quality of real voice actors, so the
final product can be worse than if real voice acting was used, as well as include generation
artifacts and mispronounced words. Also should the generated or user input text contain
harmful sentiments, the generative voice would still say them, which could be detrimental to
the career of anyone who was willing to provide their voice as a base for generation, as well
as the developers responsible.

In this workgroup, our aim was to see how far one can get using available open source
models to create a game with generated voice acting, and if possible, speaking user input
lines on the fly. Figure 1 shows the envisioned loop for voice generation. For the generative
parts, we used Tortoise TTS [1] for Text-to-Speech and Retrieval based Voice Coversion
(RVC) [2] for Voice Conversion. A demo visual-novel-type game was created using Renpy[3],
which is based on the Python programming language. This was done in an effort to include
the python-based TTS directly into the game more easily.

1 https://elevenlabs.io

24261

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://arxiv.org/abs/2305.07243
https://arxiv.org/abs/2305.07243

8 24261 – Computational Creativity for Game Development

Figure 1 Generative Voice Acting Pipeline. The text of the game is fed to Text-to-Speech (TTS)
which is then refined and/or transformed to a different voice using Voice Conversion (Conv) and
can then be played by the game. The game or the player can then generate more text and the loop
repeats.

3.1.1 Text to Speech

The Chosen TTS Model, Tortoise TTS [1] was used with the help of the ai-voice-cloning
WebUI2 which allowed for fast and easy testing. The Tortoise Model can be finetuned to
mimic cadence and intonation, but with the limited time at the workshop, we chose to only
use the voice adaptation feature. For that, we provided about 50 seconds of speech from one
of the groups participants, whose tone the model was supposed to align itself to.

Given that there was no finetuning done, the generated voice lines only resembled the
provided voice samples in tone, but not in cadence and intonation. Still, given the fact that
this did not require any additional time to train and the generation time could be brought
down to a few seconds on a Laptop, the results were promising.

3.1.2 Voice Conversion

In order to see how well the generated text could be spoken by different characters, we decided
to use the voice lines generated with Tortoise TTS with different open source pretrained
models in the Retrieval based Voice Conversion (RVC) WebUI [2]. The pretrained models
were taken from a huggingface space3, as there was no time to train an entire model from
scratch during our workgroup.

The converted voice lines notably sounded like the characters those models were trained
on and not like the original input. However, mannerisms and inflections were not generated,
if not already present in the original sample. So while this does work in allowing for more
diverse character voices, it is still not a replacement for the depth of having a voice actor
impersonate a character fully.

2 https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI
3 https://huggingface.co/juuxn/RVCModels

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 9

3.1.3 Demonstration

The generated voice lines were added to a small demo game (Figure 2) created with Renpy
[3]. The idea was to have the user input be read out loud by the TTS used in the previous
sections, which should be possible as they are both based on the Python programming
language. However, due to unforeseen issues and limited time, we did not end up adding the
functionality to the game. We suggest using a different approach if this is to be attempted
again in the future.

For the purpose of the demo, we did put pre-generated lines of different characters into
the game as audio files to show off the potential of the approach.

Figure 2 Demonstration game.

3.1.4 Conclusion

Given the small scope and time for our demo, our results for creating voice lines with Tortoise
Voice adaptation and Voice Conversion for different characters are quite promising. With
enough polish, these techniques could be used to create a decent quality for a small project,
that otherwise couldn’t afford to use real voice actors. However, the quality for the generated
voices is not yet there to compete with real voice acting on any level. We are interested to
see where this approach can be taken to in the future, especially with games possibly using
procedurally generated text in mind.

References
1 James Betker. Better speech synthesis through scaling. arXiv, 2305.07243, 2023
2 Z. Wang et al. Multi-Level Temporal-Channel Speaker Retrieval for Zero-Shot Voice Con-

version. IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 32, pp.
2926-2937, 2024, doi: 10.1109/TASLP.2024.3407577.

3 Renpy. https://www.renpy.org/. Accessed 26th June 2024.

24261

https://www.renpy.org/

10 24261 – Computational Creativity for Game Development

3.2 Meaningful Acoustics for Board Games
Filippo Carnovalini (VU - Brussels, BE), Greta Hoffmann (TH Köln, DE), Chengpeng Hu
(Southern Univ. of Science and Technology - Shenzen, CN), Leonie Kallabis (TH Köln, DE),
Matthias Müller-Brockhausen (Leiden University, NL), and Mike Preuß (Leiden University,
NL)

License Creative Commons BY 3.0 Unported license
© Filippo Carnovalini, Greta Hoffmann, Chengpeng Hu, Leonie Kallabis, Matthias
Müller-Brockhausen, and Mike Preuß

Music has become a staple aspect in videogames, providing emotional depth and enhancing
narration. Other sonic aspects also play a huge role: sound effects (SFX) and soundscapes
better the user experience and can become elements of added realism and immersion.

Less attention has been devoted to board games, which because of their physical nature
have less opportunities for embedding SFX and other procedural sounds. In this workshop
we examined what the possible approaches to the sonification of board games would be,
finding a general description of possible roles of music and sound in the gaming experience.

We started by thinking of existing examples of ways in which commercially available games
incorporate music and sound. Some children’s toys have various way to produce sounds that
keep the children entertained, and there are some electronic board games that leverage sound
as a feedback mechanism (e.g. Operation, or some iterations of Battleship) either through
buzzers or through recorded sounds played via speakers. Escape rooms often have background
music, and many game masters will (try to) provide music to accompany table-top RPGs.
Other board games are now starting to provide music in external resources, for example
via companion apps or through websites linked via QR codes. Some academic works have
focused on procedural music generation, but mostly for videogames [1, 2]. Interestingly, the
only work we know of that considers board games (although in digital format) is focused on
computer-generated games [3].

We then moved to thinking about what it means to provide fitting/meaningful music to a
board game. Sound can be used as a tool to provide feedback to enhance UX, it can enhance
the narrative (by adding a soundtrack), or can even become a game element (consider for
example Nintendo’s Ocarina Of Time), although this seems harder to achieve in board games.
We did not consider physical limitations (which would certainly need proper engineering
to be overcome) such as ways to detect board game actions or to create sound, but rather
considered the problem from an abstract perspective, trying to design a unified model that
describes how different sounds can be used in games.

3.2.1 A Model of (Board) Game Sonification

We can formalize a game as a series of possible states in a discrete space, and the selection
of a path in a tree, from root (start of the game) to leaf (end state) as the unfolding of the
game (see Figure 3, left). Mathematically, one way to obtain fitting music for a game, would
be minimizing the difference between features computed from the game state and features
that drive the music generation (see Figure 3, right).

A more pragmatic approach leverages the model conceived by Greta Hoffmann prior to
the seminar, which maps different sonic element to parts of the game graph. SFX are related
to nodes, while the (procedurally generated) melody can follow the path of the game. Finally
background music, or ambience, can be related to the more universal aspects of the game,
such as the setting (see Figure 4).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 11

Figure 3 Left: A graph model of a game: each node is a game state, the root being the initial
one. Moving from one state to the next within the universe of states creates a path, which is the
experienced game.
Right: The (continuous) features of music generation can be influenced by the discrete game states.
Inspired by the opposite approach in [4] where levels are generated depending on music.

Figure 4 Mapping of different parts of our game model to musical elements.

This simple and generic model allows the sound to interact with the game and players in
multiple ways. In the simplest case, it can be Reactive, being fully based on the game actions
and only responding to those, but it could also be Proactive, by influencing the development
of the game. It could for example help the audience of a game understand what moments in
the game are more crucial, or it could influence players to pay attention to certain aspects of
the game. In that sense, music could also be Guiding, by providing the players with directions
through musical enhancement of the game. To better understand these different modalities,
it is useful to consider how the model could be applied to some well-known games.

3.2.1.1 Colonists of Catan

Reactive: the background layer (ambience) could react to the last used/touched tile, with
nature sounds relating to mountains, fields, or cattle. The procedural layer could instead be
responding to the playstyle of each player.

24261

12 24261 – Computational Creativity for Game Development

3.2.1.2 Chess

Reactive: The procedural music could include leitmotifs for every piece, and the style could
change depending on different openings used in the game. The SFX layer could respond to
pieces movements, but also to special events such as checks.

3.2.1.3 Poker

Proactive: This game being based on incomplete knowledge could offer venues to use music in
more advanced ways, having the players be able to influence the music to bluff using motifs
related to cards they do not possess.

3.2.1.4 Hanabi

Proactive/Guiding: this game also has incomplete knowledge but it is collaborative: the
music could collaborate with the players providing hints on the current game state.

3.2.1.5 Tic-Tac-Toe

We decided to apply the model in a demo recreating a digital version of the game Tic-Tac-Toe.
Implemented in pygame, it uses the mido library to generate MIDI events that depend on
the game state. A ticking sound constitutes the background layer, with the tempo increasing
as the game progresses. The procedural level depends on the the board state, adding notes
different notes depending on where Xs and Os are (using two different instruments for the
two players/symbols), and adding an ominous low note when one of the players is about
to create a line of three. The SFX layer has sounds for each X and O added to the board,
as well as a endgame sound. The code is available at https://github.com/Facoch/Music-
TicTacToe-Pygame.

3.2.2 Conclusions

While the working group managed to have fruitful discussion and produce a demo, many
aspects still deserve investigation. Besides the practical engineering aspects needed to
implement the proposed ideas in the physical world of board games, other aspects relating to
the general model need further exploration. Most of our example are complete information
game. When it is not the case, it would be interesting, or even necessary, to provide different
acoustic experiences to different players, but that seems hard in the non-digital domain. Also,
music would certainly have an impact on the game psychology, in ways that would deserve
further studies.

Our main contribution is suggesting ways to map game elements to auditory events
and procedural music. While we focused on board games, the model still largely applies to
videogames as well, and could provide abstract guidance to sound designers and composers
for the gaming industry.

References
1 P. Lopes, A. Liapis, and G.N. Yannakakis, Sonancia: Sonification of procedurally generated

game levels, ICCC, 2015.
2 D. Plans and D. Morelli, Experience-Driven Procedural Music Generation for Games, in

IEEE Trans. on Computational Intelligence and AI in Games, 2012.
3 S. Cardinale; M. Cook and S. Colton, AI-Driven Sonification of Automatically Designed

Games. The Experimental AI and Games Workshop at AIIDE, 2022.

https://github.com/Facoch/Music-TicTacToe-Pygame
https://github.com/Facoch/Music-TicTacToe-Pygame

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 13

4 Z. Wang and J. Liu, Online Game Level Generation from Music, 2022 IEEE Conference on
Games (CoG), Beijing, China, 2022.

3.3 Roguelike in a Day
M Charity (New York University, US), Alex J. Champandard (creative.ai - Wien, AT),
David Melhart (University of Malta - Msida, MT), and Matthias Müller-Brockhausen (Leiden
University, NL)

License Creative Commons BY 3.0 Unported license
© M Charity, Alex J. Champandard, David Melhart, and Matthias Müller-Brockhausen

This Dagstuhl report details the 8-hour game jam project of the game "The Dragons of Castle
Dagstuhl"4. Keeping with the theme of the Dagstuhl 24261 conference of ”Computational
Creativity for Game Development”, we used large-language models and image generation
tools to aid with the coding and asset design of the game. This small roguelike game was
done by the small working group of M Charity, Matthias Muller-Brockenhausen, David
Melhart, and Alex Champandard.

3.3.1 Development

The roguelike genre – defined from the 1980 game Rogue – focuses on elements of gameplay
that are modeled off of dungeon exploration games such as Dungeons and Dragons. These
gameplay concepts typically include, but are not limited to, procedurally generated levels and
content, perma-death (where the player does not save any progress on death), and grid-world
turn-based movement. We incorporated these elements in our game "The Dragons of Castle
Dagstuhl."

The game was developed for HTML5-based browsers and uploaded to the independent
game-hosting platform Itch.io. Original prototyping of the game involved a chess board
found in the game room of Schloss Dagstuhl. The movement of the player and enemies
as well as the 8x8 grid level design took inspiration from classic chess piece movements on
the grid. Figure 5 shows the analog prototype version of the game on the chessboard with
the wall and character pieces. The themes for the enemies and collectable items were also
inspired by the themes surrounding castles (e.g. dragons, ghosts, skeletons), classic German
fairy tale characters (e.g. wolves, goblins) and themes from the Dagstuhl conference itself
(e.g. scientists, beer, cake, coffee.)

3.3.2 Gameplay

A player character moves around an 8x8 grid room environment in a turn-based fashion. To
continue to the next room, they must reach the stairs without losing all of their health. They
are given 4 health points at the start of the game. Being touched by an enemy character will
cause them to lose health, but will also kill the enemy. Inspired by the pawn chess piece, the
player can move 1-2 spaces at a time in the cardinal directions north, south, east, and west.
The rooms are procedurally generated with preset wall shapes and sizes being randomly
placed.

4 https://mastermilkx.itch.io/the-dragons-of-castle-dagstuhl

24261

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

14 24261 – Computational Creativity for Game Development

Figure 5 Analog prototype for the game using Schloss Dagstuhl’s chessboard

Two enemies known as the dragons, are placed in opposite but randomly selected corners
of the room. Inspired by the king chess piece, the dragons can only move one space at a time,
but will always move towards the player’s position. Other enemies are randomly selected and
placed into the room based on the room level rank – deeper level means more enemies will
appear. This acts as a difficulty scale for added challenge in the game. Each enemy class is
generated with random movement patterns at the start of the game – inspired by other chess
pieces including the rook, knight, queen, and bishop. These enemies can either randomly
choose a possible position or always move towards the player, choosing the closest possible
position measured by a Manhattan distance. Because the patterns are always random at the
start of the game session, the player must learn the movement patterns over time in a true
roguelike fashion. The possible movement positions of the enemies are indicated with red
squares on the map to allow the player to develop a strategy.

Players can pick up items throughout the room to increase their score value. GUI and
flavor text were also implemented to the game for added thematic immersion. The player
can switch between the minimalist mode – which shows the enemies, items, walls, and player
character as colored squares – and the graphic mode – which uses the pre-made AI generated
images as the sprites instead. Figures 6 and 7 shows the same room in the game, the first as
the minimalist version and the second as the graphic version.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 15

Figure 6 Minimalist mode of the game

Figure 7 Graphic mode of the game

3.3.3 Generative AI Assistance

Generative AI was used at nearly every development stage of the game. We used Github
Copilot5 – integrated as an extension in Microsoft Visual Studio Code – for programming
assistance. The sprites and graphics of the game (outside of the default minimalist mode)

5 https://github.com/features/copilot

24261

16 24261 – Computational Creativity for Game Development

were created using Microsoft Bing’s Image Creator tool6. While we weren’t able to fully
implement it into the final build of the game, the enemy descriptions and movement patterns
were going to be procedurally generated during runtime using a built in Llama TTF script7.
Incorporating these generative AI methods, greatly sped up the development time of the
game and we were able to create a polished final product within 8 hours.

References
1 Zapata. On the historical origin of the “roguelike” term, 2017. Retrieved from

https://blog.slashie.net/on-the-historical-origin-of-the-roguelike-term/.

3.4 AI for Romantic Comedies II
Michael Cook (King’s College London, GB), Gabriella A. B. Barros (modl.ai - Maceio, BR),
Alena Denisova (University of York, GB), Ahmed Khalifa (University of Malta - Msida,
MT), Antonios Liapis (University of Malta - Msida, MT), Johanna Pirker (LMU München,
DE), Emily Short (Oxford, GB), Gillian Smith (Worcester Polytechnic Institute, US), Anne
Sullivan (Georgia Institute of Technology - Atlanta, US), and Tommy Thompson (AI and
Games - London, GB)

License Creative Commons BY 3.0 Unported license
© Michael Cook, Gabriella A. B. Barros, Alena Denisova, Ahmed Khalifa, Antonios Liapis, Johanna
Pirker, Emily Short, Gillian Smith, Anne Sullivan, and Tommy Thompson

At Dagstuhl Seminar 22251, the first author ran a workgroup about AI for Romantic Comedy
[1]. In this working group, we discussed the difficulties inherent in modelling both romance
and comedy through game and AI systems. After a length discussion in the morning, the
afternoon sessions resulted in three short design proposals for projects that would examine
different aspects that had been brought up. This included using the player to interfere with
social simulations, and a proposal for a game which leveraged Twitch audiences to act as
the audience for a reality TV show comprised of AI agents. Earlier in the week of Dagstuhl
Seminar 24261 we worked on several groups relating to narrative analysis and simulation,
which reminded some attendees of the working group on romance and comedy. We decided
to run the topic a second time, to incorporate the views of new attendees, the intervening
two years of research ideas, and to emphasise some practical experimentation.

Although many games support both romance and comedy, they tend to manifest in very
different ways. Romance often appears either through a narrative chain of romantic subplots,
especially ’romanceable’ NPCs, or specific romantic systems that bond characters together
over time. Comedy is more emergent – while explicitly comedic games exist (such as many
of the LucasArts adventure games from the 1990s) comedy in games is often found as a
consequence of player interaction with systems such as physics engines. Both comedy and
romance are highly dependent on subtle concepts such as timing, pacing and social cues – all
of which makes them difficult to either simulate or analyse automatically.

We continued the work of the 2022 working group in this session, opening with introduc-
tions and discussion, and then breaking early into three working groups that tackled different
topics that had arisen: one practical implementation-focused project; one speculative design

6 https://www.bing.com/images/create
7 https://fuglede.github.io/llama.ttf/

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 17

project; and one survey of the landscape of romance in games. We briefly summarise our
work below.

3.4.1 A Survey of Romance in Games

This subgroup, run by (G. Barros, A. Khalifa, and A. Sullivan), surveyed the state of
romance in games and began a categorisation of how they are integrated into the game’s
design. The inclusion criteria were that the game must incorporate at least one ‘relationship’,
that romance must be an option, and that the relationship must change over time. The
group developed two axes along which to sort games: the degree to which player action
affects the development of the relationship, and the integration of the relationships into the
game’s mechanics and systems.

The subgroup also broke down romance systems into different types: action-based systems
where game performance affects relationships; gift-based systems where items and dialogue
are used instead; relationships that confer bonuses on the player’s gameplay experience; and
relationships that only affect the narrative or plot.

3.4.2 Story Sifting for Romance and Comedy

This subgroup was run by (G. Smith, J. Pirker, and A. Liapis). Story sifting is a concept in
narrative research whereby a simulation produces a large quantity of plot events, which an
AI system then selects a subset of to present a compelling narrative or perspective on. This
subgroup took this concept and applied it to modern interaction styles popularised by social
media apps such as TikTok, to investigate how stories about human relationships could be
told through fragmented or epistolary formats, with a human player potentially acting as
the story sifter.

The group also investigated the degree to which large models such as ChatGPT or
Midjourney could understand comedic or romantic narrative concepts, or how well they were
suited for supporting content creation for such games. They found largely negative results in
their short exploratory study, particularly in issues relating to heteronormativity, coherence
and sustained content reuse.

3.4.3 Comedic Emergence in Social Simulations

This subgroup, run by (E. Short, A. Denisova, T. Thompson, and M. Cook), investigated
the requirements of a social simulation system to allow comedy (and romance) to emerge
naturally through the structural setup. The group rapidly prototyped a scenario in Inform 7,
an interactive fiction authoring engine, where a group are on a double date at a restaurant.
By assigning a variety of actions, traits and inciting incidents to the cast and setting, the
date inevitably goes wrong in different ways, arising to different kinds of outcome.

The group’s findings suggested that understanding the affordances of the narrative space
– as explored in another working group run by Emily Short at this seminar – might help to
predict which combinations of setup properties result in more or less interesting, funny or
romantic outcomes. Rather than trying to guide the narrative precisely, an AI system could
instead simply help sculpt the space of opportunities. However, assessing what outcomes
are ‘funny’ or ‘romantic’ remains a challenging, subjective and potentially unsolvable (in the
traditional sense) problem.

24261

18 24261 – Computational Creativity for Game Development

References
1 Dan Ashlock, Setareh Maghsudi, Diego Perez Liebana, Pieter Spronck, Manuel Eber-

hardinger. Human-Game AI Interaction (Dagstuhl Seminar 22251). 2022

3.5 AI for Speedrunning
Michael Cook (King’s College London, GB), Maren Awiszus (Viscom AG - Hannover, DE),
Filippo Carnovalini (VU - Brussels, BE), M Charity (New York University, US), and
Alexander Dockhorn (Leibniz Universität Hannover, DE)

License Creative Commons BY 3.0 Unported license
© Michael Cook, Maren Awiszus, Filippo Carnovalini, M Charity, and Alexander Dockhorn

Speedrunning refers to a collection of related activities where people play games under specific
conditions – usually trying to complete a game as quickly as possible, but sometimes trying
to complete it with certain restrictions (e.g. while blindfolded), variations (e.g. randomisers
which alter the structure of an otherwise static game), or other feats (e.g. two players sharing
a single controller). Speedrunning is a very popular subculture within games: the official
portal speedrun.com reports 20m annual visits to their site, which hosts over 4.7m individual
speedruns across 43.2k games [1].

Speedrunning remains vastly understudied within game AI research, despite the obvious
parallels between game-playing AI research and time-optimised game-playing. Interestingly,
one of the few pieces of academic writing about speedrunning in games comes from a Dagstuhl
publication [2], with some studies existing from a sociological or cultural perspective outside
of AI [3]. This working group set out to discuss the many problems that exist within
speedrunning for AI researchers to tackle, and then to concretely implement a prototype
platform for speedrunning research with AI systems.

We began by discussing the current state of speedrunning and identifying where there
was potential for impact. The speedrunning community is inventive and resourceful, and
already do a lot of work that would be considered research-grade in some fields: randomisers,
for example, procedurally modify games to make them unpredictable to play, while retaining
consistency in terms of pacing, flow and complexity. We also discussed tool-assisted speedruns
(TAS), where speedruns are executed by a computer replaying pre-defined commands (not
competing with human speedrunners). This allows speedrunners to perform tricks requiring
superhuman skill, but each TAS must be made by hand.

Speedruns, no matter what form they take, usually exploit glitches in games to skip
content or progress faster. These glitches take on many forms, including manipulating data
in memory, forcing physics simulations into edge case scenarios, and causing simultaneous
execution of code through multiple inputs. Many of the most popular AI environments for
game-playing in the past decade are competitive, meaning they are ranked on winrate rather
than time taken. For single-player games used as AI environments, such as DOOM, the
reward signal for the discovery and use of glitches is likely too weak for most AI to use. For
this reason, we chose to use the workgroup to build testing environments for single-player,
open-source and speedrunnable games, so that we can investigate this problem space further
in the future. In the next section we describe our chosen platform, the game engine PICO-8
and the game Celeste.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 19

Figure 8 The sprite design interface.

3.5.1 Celeste and PICO-8

PICO-8 is a fantasy console – a type of game engine specifically designed to be highly
constrained, often mimicking the hardware restrictions in consoles from the 1990s and 1980s.
PICO-8 is perhaps the most popular example of this. Its restrictions include a 128x128 pixel
screen, a palette of 16 colours, a maximum size of 32kb for games, and a limit of 256 game
sprites (see Figure 8). All PICO-8 games are open-source, and are distributed online through
a BBS-like system within PICO-8 itself.

Celeste, by EXOK Games, is a ‘hardcore platformer’ released in 2017. The primary
mechanic in the game is dashing – the player can press a button to dash once in any direction,
including in the air. This is reset when they are touching the ground again. Celeste became
popular with speedrunners due to its difficulty level and the high skill ceiling of its controls.
Celeste was expanded into a full game and released in 2018, where it won numerous awards
and sold millions of copies. The full game is also beloved by speedrunners, and has many
specific dedicated speedrun mods and extensions made for it.

We chose PICO-8 as a target domain due to its openness and the ease with which
games can be instrumented and analysed. Celeste was an obvious target for us because its
prominent position in the speedrunning community and its many known glitches and exploits.
However, during the working group we discovered Celeste Tech Training, a PICO-8 game
made specifically to teach speedrunners how to perform certain tricks. We modified this
game to strip out unnecessary functionality, and used its focused levels to test our prototypes
on. Figure 9 shows the first level of this game, which teaches a technique called spike jumping.
Spike jumping allows the player to jump on a specific part of a spike floor without being
hurt.

24261

20 24261 – Computational Creativity for Game Development

Figure 9 Modified version of CTT.

3.5.2 Approaches

We implemented three different systems for replicating the spike jump technique in Celeste
Tech Training (CTT). Our first system was built into the code – it simulates virtual inputs
and can load and save game states using custom code. This is the least flexible solution as it
needs to be rewritten for different games, but it is the most portable – it is self-contained
within the cart and does not require any external tools.

The second solution leverages Celia [4], a LUA software designed to facilitate the creation
of TASs of PICO-8 games. By modifying the source code of the project, the software was
adapted to automatically create TASs of a simplified Celeste level which requires a spike
jump to be beaten (see Figure 9). We implemented a random agent that adds random inputs
every fifth frame of TAS. The distance of the character from the goal position (beyond the
spikes section that requires a spike jump to be cleared) served as an objective function.
Whenever a new shortest distance was achieves, the TAS was saved, providing record of how
it is possible to reach that distance. In our tests8, the random agent was unable to reach the
destination point, but it managed to perform the initial part of the spike jump: it jumped
on the correct pixel at the corner of the spikes, but failed to then perform a dash at the
correct moment to clear the needed distance. A Reinforcement Learning based agent could
probably fare better than this naïve random agent, providing more adaptability over our
first approach.

For a more general approach, we designed a Python interface to work with the Celia
software. With the pynput library, this approach used keypresses and Celia command
shortcuts (i.e. loading the TAS files, skipping frames) to play the PICO-8 games frame-by-
frame. Evaluation for this approach would involve retrieving screenshots from the game
through the Celia software. With the frame manipulation, the game could also be reset

8 The modified Celia code is available at https://github.com/Facoch/Celia

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 21

to earlier states for tree-searches of optimal paths and keystrokes. With this approach, an
AI-generated speedrun could be made for any PICO-8 game that could be loaded into Celia;
without manipulating the source code of the game or Celia itself.

We tested this methodology on three different games retrieved from the PICO-8 community
BBS9: Get Out of this Dungeon, treeboi_test, and Witch Loves Bullets. With all three
games, randomly made TAS files were successfully generated, loaded, and played in the
Celia software. Future work would look to using tree-search methods such as A* to create
speedruns.

3.5.3 Further Work

Our next steps are to clean up and open source these systems, along with publishing our
initial survey of the speedrunning landscape with respect to AI. Beyond that, we believe
Celeste in PICO-8 represents a good domain for an AI competition. Designing the framework
and rules for this competition will also help us clarify what challenges are most interesting,
and begin to grow academic interest around this area.

References
1 Speedrun.com – About. http://www.speedrun.com/about Accessed 3 July 2024.
2 Manuel Lafond. The complexity of speedrunning video games. In 9th International Con-

ference on Fun with Algorithms (FUN 2018). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2018.

3 Scully-Blaker, Rainforest. Re-curating the Accident: Speedrunning as Community and
Practice. Masters thesis, Concordia University, 2016.

4 gonengazit/Celia. https://github.com/gonengazit/Celia Accessed 9 July 2024.

3.6 Skill-Discovery in (Strategy) Games
Alexander Dockhorn (Leibniz Universität Hannover, DE), Manuel Eberhardinger (Hochschule
der Medien - Stuttgart, DE), Chengpeng Hu (Southern Univ. of Science and Technology -
Shenzen, CN), and Matthias Müller-Brockhausen (Leiden University, NL)

License Creative Commons BY 3.0 Unported license
© Alexander Dockhorn, Manuel Eberhardinger, Chengpeng Hu, and Matthias Müller-Brockhausen

Strategy games present a unique challenge in artificial intelligence (AI) research. They can
broadly be classified into two types: turn-based and real-time strategy games. Both types
typically require the player or AI to manage multiple units or resources, often with incomplete
information about the opponent’s actions. The large branching factor and long game duration
make it difficult for AI to explore all possible strategies, which is further complicated by the
need to plan several moves ahead. The state-of-the-art methods in AI for strategy games
include search-based algorithms and reinforcement learning (RL), but these often rely on
human-defined strategies or subgoals, limiting their scalability and generalizability.

While the work on AlphaStar [2, 3] and OpenAI Five [5] have shown that it is possible
to train strong AI agents for complex games such as Starcraft 2 and Dota 2, both works
required massive amounts of compute resources until satisfying results have been achieved.
For the purpose of speeding up the learning process, the working group on skill discovery in

9 https://www.lexaloffle.com/bbs/?cat=7

24261

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

22 24261 – Computational Creativity for Game Development

(strategy) games has been formed to evaluate the applicability of skill discovery methods
to this special domain. We particularly emphasize works on skill discovery as part of RL
algorithms. In this context, skill discovery refers to identifying and learning sub-policies or
strategies that can be applied to achieve or identify specific subgoals within a game, thereby
enabling more efficient and scalable AI systems.

3.6.1 Preliminaries of Skill Discovery

Skill discovery in AI remains an open problem, particularly when it comes to discovering
skills without human intervention. The interpretation of what constitutes a “skill” in a given
context is still unclear, making it challenging to develop a unified approach to skill discovery.

Particularly within the RL framework, a skill is typically defined as a policy aimed
at achieving a specific subtask or goal. The options framework [7, 6] formalizes this by
learning policies for subtasks, identifying the start and end points of these tasks, and using
these learned skills to simplify the overall decision-making process. However, the distinction
between a skill and a task is not always clear, especially when a subgoal can only be reached
through a single deterministic policy.

3.6.2 Proposed Approaches and Ideas

Current research explores various methods for skill discovery, including hierarchical ap-
proaches, bottom-up skill learning, and the application of relational representations of game
elements. Given an initial literature review, our working group has identified the following
promising approaches for skill discovery in strategy games:

Text-based Task Decomposition: Strategy games often have a simple goal, e.g.
defeating the opponent’s units or destroying its base. However, doing so involves plenty
of subtasks. Those can be defined on varying ranges of granularity. Given the increasing
capabilities of large language models, task descriptions such as “defend the base” could be
decomposed into “train at least 3 units” and “patrol the surroundings of your base”. Such
enriched descriptions may directly represent sub-goals and allow for a more interpretable
and scalable approach to skill discovery. Further, it allows to define more fine-grained
reward functions given the descriptions [12].
Relational Representations: Game state representations in strategy games can become
quite complex. Units, abilities, weapons, buildings, and resources are just a few of the
typical systems included in strategy games. Attempts to create general vectorized
state representations have recently been studied [11], however, those create a unique
representation for every game mapping all of its subsystems. While they allow the
definition of state-space abstractions, transferring results from one game to the other is
hindered by the granularity of this state representation. Similarly, matrix-based or image-
based representations as used in AlphaStar [2] enabled the training through large-scale
reinforcement learning but due to the complexity of the input at the cost of enormous
computational resources.
One possibility to overcome this problem is the use of a relational representation of game
elements, such as “workers - mine - resources.” Defining low-level systems for the execution
of such relations allows to focus the agent’s training on high-level strategic decision-making.
At the same time, the high-level relation allows the transfer of knowledge in between
games with different low-level controls. Using such a representation in combination with
relational reinforcement learning [10, 9, 8] may therefore improve the efficiency of training
agents in complex strategy games.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 23

Pattern Mining and Clustering: Given a data set of successful and unsuccessful
play traces, pattern mining and clustering algorithms may be used to cluster them into
groups of similar elements and extract abstract prototypes. Techniques like the KRIMP
algorithm[1] or Skid Raw [19], which extract patterns from previous action sequences,
could be applied to discover meaningful skills. Similarly, time sub-series mining [4], used
to measure the distance between interaction sequences, may reveal underlying patterns
that represent skills.
Bottom-Up Skill Discovery: While most existing methods rely on top-down ap-
proaches, our group was exploring approaches for reversing this process by discovering
skills from the ground up. Current methods are able to learn skills in the latent space
of neural networks from collected demonstrations [21, 22, 23, 24]. However, these skills
are not interpretable, and only after their execution can one infer what the learned skills
represent. Another disadvantage of these methods is that they are only suitable for small
environments and toy tasks, where the agent needs to navigate to multiple goals. To
overcome the limitations of simple tasks and apply these methods to more complicated
domains, we propose to learn skills from sequences of actions and iteratively refine these
skills to handle the large search spaces inherent in strategy games. [18].
Skill Discrimination: Effective skill discovery requires a discriminator to identify
whether a discovered policy qualifies as a skill and if it is any different than already
known skills [13]. Quality Diversity Optimization as in the Diversity Policy Gradient
algorithm [20] introduces a method for discovering a diverse set of skills by balancing
the exploration of different strategies with maintaining high-quality solutions. Recently,
Wang et al. [25] proposed to incorporate a regularization term into the RL objective that
maximizes the negative correlation to increase the diversity of RL policies via assembling
multiple sub-policies. Notably, this diversity pertains to the behavior of the derived
policy rather than the parameter space, as minor variations in parameters could lead
to significant differences in behavior. Although this algorithm was initially verified in
the context of game content generation, it could be adapted for skill discrimination to
maximize the diversity of discovered skills.

3.6.3 Conclusion

Skill discovery in strategy games is a critical area of research that has the potential to
significantly enhance the capabilities of AI systems and speed up their training. By exploring
new methods for discovering and learning skills, our working group reviewed recent works
on skill discovery in other domains than game-playing and identified interesting areas for
further research. From here on, we outline several future actions to advance skill discovery
in strategy games:

We plan to investigate hybrid/iterative approaches that combine a bottom-up and top-
down search for skills. Such hybrid approaches may offer a more robust solution to the
challenges of skill discovery in large and complex game environments.
Leveraging existing game platforms, such as GVGAI [17], Stratega [14, 15], and Grid-
dly [16], could facilitate the testing and validation of new skill discovery methods. These
platforms provide standardized environments for benchmarking AI performance, which is
crucial for comparing the effectiveness of different approaches.
Given the limitations of current methods, particularly in terms of scalability, we propose
to produce a comprehensive survey paper.

24261

24 24261 – Computational Creativity for Game Development

References
1 Vreeken, J., Leeuwen, M. & Siebes, A. Krimp: mining itemsets that compress. Data Mining

And Knowledge Discovery. 23, 169-214, 2010 (10). http://dx.doi.org/10.1007/s10618-010-
0202-x.

2 Mathieu, M., Ozair, S., Srinivasan, S., Gulcehre, C., Zhang, S., Jiang, R., Paine, T.,
Powell, R., Żołna, K., Schrittwieser, J., Choi, D., Georgiev, P., Toyama, D., Huang, A.,
Ring, R., Babuschkin, I., Ewalds, T., Bordbar, M., Henderson, S., Colmenarejo, S., Oord,
A., Czarnecki, W., Freitas, N. & Vinyals, O. AlphaStar Unplugged: Large-Scale Offline
Reinforcement Learning, 2023. https://arxiv.org/abs/2308.03526.

3 Arulkumaran, K., Cully, A. & Togelius, J. Alphastar: An evolutionary computation perspec-
tive. Proceedings Of The Genetic And Evolutionary Computation Conference Companion.
pp. 314-315, 2019.

4 Mörchen, F. Time series knowlegde mining, Görich und Weiershäuser, 2006.
5 OpenAI, :, Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C.,

Farhi, D., Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pachocki,
J., Petrov, M., O. Pinto, H., Raiman, J., Salimans, T., Schlatter, J., Schneider, J., Sidor, S.,
Sutskever, I., Tang, J., Wolski, F. & Zhang, S. Dota 2 with Large Scale Deep Reinforcement
Learning, 2019. https://arxiv.org/abs/1912.06680.

6 Al-Emran, M. Hierarchical reinforcement learning: a survey. International Journal Of
Computing And Digital Systems. 4, 2015.

7 Stolle, M. & Precup, D. Learning options in reinforcement learning. Abstraction, Reformu-
lation, And Approximation: 5th International Symposium, SARA 2002 Kananaskis, Alberta,
Canada August 2–4, 2002 Proceedings 5. pp. 212-223, 2002.

8 Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y., Babuschkin, I., Tuyls, K., Reichert,
D., Lillicrap, T., Lockhart, E. & Others. Relational deep reinforcement learning, 2018. ArXiv
Preprint ArXiv:1806.01830.

9 Morales, E., Scaling up reinforcement learning with a relational representation. Proc. Of
The Workshop On Adaptability In Multi-agent Systems. pp. 15-26, 2003.

10 Džeroski, S., De Raedt, L. & Blockeel, H., Relational reinforcement learning. Inductive
Logic Programming: 8th International Conference, ILP-98 Madison, Wisconsin, USA, July
22–24, 1998 Proceedings 8. pp. 11-22, 1998.

11 Dockhorn, A., Hurtado-Grueso, J., Jeurissen, D., Xu, L. & Perez-Liebana, D., Game state
and action abstracting monte carlo tree search for general strategy game-playing. 2021
IEEE Conference On Games (CoG). pp. 1-8, 2021.

12 Luketina, J., Nardelli, N., Farquhar, G., Foerster, J., Andreas, J., Grefenstette, E., Whiteson,
S. & Rocktäschel, T., A survey of reinforcement learning informed by natural language.
ArXiv Preprint ArXiv:1906.03926, 2019.

13 Eysenbach, B., Gupta, A., Ibarz, J. & Levine, S., Diversity is all you need: Learning skills
without a reward function. ArXiv Preprint ArXiv:1802.06070, 2018.

14 Dockhorn, A., Grueso, J., Jeurissen, D. & Liebana, D. STRATEGA: A General Strategy
Games Framework. AIIDE Workshops, 2020.

15 Perez-Liebana, D., Dockhorn, A., Grueso, J. & Jeurissen, D. The design of “Stratega": A
general strategy games framework. ArXiv Preprint ArXiv:2009.05643, 2020.

16 Bamford, C. Griddly: A platform for AI research in games. Software Impacts. 8, 2021.
17 Perez-Liebana, D., Liu, J., Khalifa, A., Gaina, R., Togelius, J. & Lucas, S., General video

game ai: A multitrack framework for evaluating agents, games, and content generation
algorithms. IEEE Transactions On Games. 11, 195-214, 2019.

18 Liu, G., Hu, E., Cheng, P., Hung-Lee & Sun, S., Hierarchical Programmatic Reinforcement
Learning via Learning to Compose Programs, 2023. https://arxiv.org/abs/2301.12950.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 25

19 Tanneberg, D., Ploeger, K., Rueckert, E. & Peters, J., Skid raw: Skill discovery from raw
trajectories. IEEE Robotics And Automation Letters. 6, 4696-4703, 2021.

20 Pierrot, T., Macé, V., Chalumeau, F., Flajolet, A., Cideron, G., Beguir, K., Cully, A.,
Sigaud, O. & Perrin-Gilbert, N., Diversity policy gradient for sample efficient quality-diversity
optimization. Proceedings Of The Genetic And Evolutionary Computation Conference, 2022
(7). http://dx.doi.org/10.1145/3512290.3528845.

21 Nieto, J. J., Castanyer, R. C., & Giro-i-Nieto, X., Unsupervised Skill-Discovery and Skill-
Learning in Minecraft. In ICML 2021 Workshop on Unsupervised Reinforcement Learning,
2021.

22 Kim, T., Ahn, S., & Bengio, Y., Variational temporal abstraction. Advances in Neural
Information Processing Systems, 32, 2019.

23 Kipf, T., Li, Y., Dai, H., Zambaldi, V., Sanchez-Gonzalez, A., Grefenstette, E., ... &
Battaglia, P., Compile: Compositional imitation learning and execution. In International
Conference on Machine Learning, pp. 3418-3428, 2019.

24 Jiang, Y., Liu, E., Eysenbach, B., Kolter, J. Z., & Finn, C., Learning options via compression.
Advances in Neural Information Processing Systems, 35, 21184-21199, 2022.

25 Wang, Z., Hu, C., Liu, J., & Yao, X., Negatively correlated ensemble reinforcement learning
for online diverse game level generation. In The Twelfth International Conference on Learning
Representations, 2024.

3.7 Introducing AI Experience: Games UX in the Age of Generative AI
Anders Drachen (University of Southern Denmark - Odense, DK), Paolo Burelli (IT Univer-
sity of Copenhagen, DK), Leonie Kallabis (TH Köln, DE), and David Melhart (University of
Malta - Msida, MT)

License Creative Commons BY 3.0 Unported license
© Anders Drachen, Paolo Burelli, Leonie Kallabis, and David Melhart

3.7.1 Introduction

The work group considered the evolving role of User Experience (UX) research in the context
of digital games as they transition towards using generative AI. Traditionally, game design
has been a manual process where designers meticulously craft environments, narratives,
and interactions to shape a predictable and controllable user experience. However, with
the integration of procedural content generation and generative AI models, such as Large
Language Models (LLMs), the landscape of game development is potentially shifting towards
an era where games can be dynamically created and adapted, not just during production but
also in real-time as players engage with them.

This shift presents new challenges and opportunities for UX research. The essay outlines
how existing UX research methods, which rely on controlled testing environments and
predictable user interactions, are increasingly inadequate for understanding and evaluating
experiences in games that are generated on-the-fly by AI. Traditional UX frameworks are
built on the premise that game environments and player interactions can be pre-defined
and tested empirically. However, in a generative game context, where AI can autonomously
create complex, responsive environments and narratives tailored to individual players, the
very foundations of UX research are called into question.

24261

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

26 24261 – Computational Creativity for Game Development

3.7.2 How Generative Games Impact UX Research

Several key dimensions of generative games that impact UX research: conversion, complexity,
timing, staticness, social complexity, and personalization. These dimensions describe the
extent to which game elements are generated, their complexity, when generation occurs
(pre-production, at game start, or in real-time), how static or dynamic the generated content
is, the number of players involved, and the level of personalization to individual players. Each
of these factors adds layers of variability that challenge traditional UX evaluation methods,
making it harder to predict and measure user experience outcomes.

If we consider a future where AI could create entire gaming experiences from scratch,
adapting continuously to user behavior and preferences, what role is left for human designers?
In such a scenario, the role of human designers and traditional UX researchers could diminish,
replaced by AI systems that not only generate games but also simulate user responses to test
and refine these experiences. This raises profound questions about the future of UX research.
Will traditional concepts like sample sizes and controlled environments become obsolete?
Will UX researchers need to transform into AI Experience (AIX) engineers who design the
parameters and constraints that guide AI-generated experiences?

Despite these challenges, even in a future scenario where generative AI is capable of
designing and developing the kinds of games that are today hand-crafted, it is suggested
that there remains a vital role for human creativity and oversight in game design. Human
designers bring an irreplaceable understanding of narrative, emotion, and player psychology
that AI, despite its capabilities, might never be able to fully replicate. Moreover, the ongoing
need to ensure ethical considerations, inclusivity, and meaningful engagement in gaming
experiences underscores the importance of human involvement.

3.7.3 Conclusion

In conclusion, as generative AI continues to advance, UX research in gaming must evolve
to address the complexities and dynamic nature of AI-generated content. Researchers
and designers should collaborate to develop new methodologies and frameworks that can
adapt to this rapidly changing landscape, ensuring that player experiences remain engaging,
meaningful, and ethically sound. This synthesis highlights the need for a paradigm shift in
UX research, moving towards a future where human and AI collaboration creates richer,
more personalized gaming experiences.

References
1 Kokkinakis, A., Demediuk, S. P., Nölle, I., Olarewaju, O., Patra, S., Robertson, J., York, P.,

Pedrassoli Chitayat, A., Coates, A., Slawson, D., Hughes, P., Hardie, N., Kirman, B., Hook,
J. D., Drachen, A., Ursu, M. & Block, F. O., DAX: Data-Driven Audience Experiences in
Esports. In Proceedings for ACM International Conference on Interactive Media Experience,
IMX 2020 (Barcelona, Spain), Association for Computing Machinery (ACM), 2022.

2 Drachen, A., Mirza-Babaei, P. & Nacke, L. (Eds), Games User Research. Oxford University
Press. ISBN-10: 0198794843, 2018.

3 Cairns, P., Doing Better Statistics in Human-Computer Interaction. Cambridge University
Press, 2019.

4 Shaker, N., Togelius, J. and Nelson, M., Procedural Content Generation in Games, Springer,
2016.

5 Hopson, J., The Secret Science of Games, 2013.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 27

6 M. Cook, S. Colton and J. Gow, The ANGELINA Videogame Design System—Part I,
in IEEE Transactions on Computational Intelligence and AI in Games, vol. 9, no. 2, pp.
192-203, 2017. doi: 10.1109/TCIAIG.2016.2520256.

3.8 LLM-based Program Search for Games
Manuel Eberhardinger (Hochschule der Medien - Stuttgart, DE), Duygu Cakmak (Creative
Assembly - Horsham, GB), Alexander Dockhorn (Leibniz Universität Hannover, DE), Raluca
D. Gaina (Tabletop R&D - London, GB), James Goodman (Queen Mary University of London,
GB), Amy K. Hoover (NJIT - Newark, US), Simon M. Lucas (Queen Mary University of
London, GB), Setareh Maghsudi (Ruhr-Universität Bochum, DE), and Diego Perez Liebana
(Queen Mary University of London, GB)

License Creative Commons BY 3.0 Unported license
© Manuel Eberhardinger, Duygu Cakmak, Alexander Dockhorn, Raluca D. Gaina, James Goodman,
Amy K. Hoover, Simon M. Lucas, Setareh Maghsudi, and Diego Perez Liebana

Before the advent of large language models (LLMs) for code [1], program synthesis was
considered a difficult problem due to the combinatorial explosion of the search space [2], and
so most solvable tasks were based on simple string manipulations or list sorting problems in a
predefined domain-specific language (DSL) [3]. Program synthesis for games was also limited
to simple problems with a well-defined search space, which was only feasible by incorporating
high-level concepts of the game into the DSL [4, 5, 6].

Considerations on the use of program synthesis with higher programming languages such
as Python or Java for games research were rarely made and only possibilities were outlined
[7] or it was evaluated how to bring automated game design systems from game description
languages to the use of programming languages [8].

Recently, methods for LLM-based program search for the automatic design of playable
games based on program code [9, 10, 11] or game content based on JSON representations
[12] have been presented. In addition, LLMs are also adapted for synthesizing programmatic
policies in Python, which are then converted into a DSL usable in the given environment [13]
or for building a world model based on python code, approximating the reward and state
transition functions for simple games, which are then used for generating an action plan [14].

In this working group, we explore the possibilities of LLM-based program search for a
broader range of applications for games without relying on a predefined specification such
as a DSL, e.g. Ludii [9], the video game description language [10] and Karel [13], or a
predefined converter for JSON [12]. The goal is that LLMs synthesize program code that
is directly usable without further transformation or prior specification. We evaluate our
approach on different domains in one of two programming languages, Python and Java. In
Python, programmatic agent policies and functions for procedural content generation (PCG)
are synthesized. In Java, the framework is included into TAG, a tabletop games framework,
where heuristics for board games are designed [16].

3.8.1 Framework

The general framework is based on an evolutionary hill-climbing algorithm where the mu-
tations and the seed of the initial program are performed by an LLM [13, 15]. Figure 10
displays the whole framework. We start by generating a task prompt to obtain an initial
Python or Java function, which is then executed in a safe environment in a subprocess.

24261

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

28 24261 – Computational Creativity for Game Development

Figure 10 The general framework for the program search. At the beginning, an initial prompt is
generated, which is then processed by the LLM and returns a function. Subsequently, the returned
function is evaluated in a sub-process and the results are reported back to the main process, where
the prompt is updated and then returned to the LLM or the evaluation criteria is met.

This ensures that the main process can terminate the function after a certain time period,
preventing the synthesized code from running indefinitely. If the function has been executed
successfully, the task prompt is updated with the evaluation metric achieved and some
additional information, depending on the environment, e.g. the action trace of the executed
function. If an error occurs, e.g. the code cannot be parsed due to incorrect syntax, runtime
errors due to incorrect indexing of arrays or similar problems, the description of the error is
used to update the task prompt. These steps are repeated iteratively until the evaluation
criteria, the fitness function, for the problem domain is fulfilled or the specified number of
generations is reached. The individual steps are summarized in Algorithm 1.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 29

Figure 11 The three miniature versions of Atari games, Breakout, Asterix and Space Invaders,
which are used for the synthesis of programmatic policies.

3.8.2 Game Applications

Since our framework is independent of the used LLM, we use Llama 3.1 [19] or ChatGPT
based on GPT-4 [20] in the following experiments.

3.8.2.1 Programmatic Polices: Minatar

Minatar [17] is a collection of five games that are miniature versions of Atari games. In
Minatar, the games are represented as a symbolic state space on a 10x10 grid, with each
grid cell representing an object such as walls, enemies or the agent. Previously, Minatar was
used in [18] to explain the behavior of agents through program synthesis, but it was only
possible to explain short sub-trajectories since enumerative search based methods were used
to search through a predefined domain-specific language that resembles Lisp. For all Minatar
experiments Llama 3.1 [19] with a search budget of 200 iterations, i.e. 200 programs, with a
total of five refinements for each program, is used. The agent only receives the first state of
the game with a description of the available objects of the state, actions of the environment
and a description of the game, that is taken from Young and Tian [17]. In these experiments
we use three Minatar environments, Breakout, Asterix and Space Invaders, which are shown
in Figure 11.

Breakout is a game where the goal is to destroy all the bricks with the ball by controlling
the paddle to bounce the ball each time before it goes out off the screen. With each destroyed
brick the agent receives a reward of one. Listing 1 shows the best synthesized program.

The average reward in the final evaluation was 9.06 out of 1000 test runs, which is
comparable to the DQN network with a replay buffer trained on this problem [17]. The best
run achieved a reward of 103, i.e. more than three runs of the game without defeat.

1 import numpy as np
2

3 def policy (state):
4 state = np.array(state)
5 ball_position = np.where(state == ’ball ’)
6 paddle_position = np.where(state == ’paddle ’)
7

8 if ball_position [1]. size > 0 and paddle_position [1]. size > 0:
9 ball_x = ball_position [1][0]

10 paddle_x = paddle_position [1][0]
11

12 if ball_x < paddle_x :
13 return ’left ’
14 elif ball_x > paddle_x :

24261

30 24261 – Computational Creativity for Game Development

15 return ’right ’
16 else:
17 return ’noop ’
18 else:
19 # If the ball or paddle is not found ,
20 # just return ’noop ’ for now
21 return ’noop ’

Listing 1 Best program found to play Breakout, which returns an average reward of 9.06 of 1000
runs

Asterix is a game where the goal is to control the player across the screen and collect
gold while avoiding enemies. The player gets one reward for each collected gold and the
game is over when the player comes in contact with an enemy. The synthesized code is 60
lines long (omitted here for brevity). The best run of 1000 test runs achieved an reward of
47 while the average reward of all test runs was 5.01. This is also comparable to the worst
DQN network without a replay buffer from the baselines [17].

Space Invaders is a game where the player controls a cannon and must shoot aliens
while dodging bullets launched from the alien spaceship. Additionally, the player must
prevent the aliens from reaching the bottom of the screen. Listing 2 shows the best program
found during the search process, which has an average reward of 20.89 when evaluating 1000
test runs, which is better to the worst neural network architecture DQN without a replay
buffer and comparable to the DQN [17]. The best achieved reward was 47, where the agent
almost destroy two appearing alien ships in a single episode before the aliens reached the
agent.

1 import numpy as np
2

3 def play_space_invaders (state):
4 # Get the current position of the cannon
5 cannon_position = np.where(state == ’cannon ’) [1][0]
6

7 # Check if there are any aliens in the current row
8 alien_row = np.where ((state [0:8 , :] != ’empty ’) & (state [0:8 , :] != ’

alien_left ’) & (state [0:8 , :] != ’alien_right ’))
9

10 if len(alien_row [0]) > 0:
11 # Find the closest alien to the cannon
12 closest_alien_position = np.min(np.abs(alien_row [1] -

cannon_position))
13

14 # Move towards the closest alien
15 if closest_alien_position < 0:
16 return ’left ’
17 elif closest_alien_position > 0:
18 return ’right ’
19 else:
20 # If there are no aliens in the current row , move to the center

of the screen
21 if cannon_position < 5:
22 return ’right ’
23 elif cannon_position > 5:
24 return ’left ’
25

26 # Check for enemy bullets above the cannon and try to avoid them
27 enemy_bullets = np.where(state [:, cannon_position] == ’enemy_bullet ’)
28 if len(enemy_bullets [0]) > 0:
29 if cannon_position < 9:
30 return ’right ’
31 else:
32 return ’left ’

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 31

33

34 # If no aliens or enemy bullets are found , try to fire
35 return ’fire ’

Listing 2 Best program found to play Space Invaders, which returns an average reward of 20.89
of 1000 runs

3.8.2.2 Vehicle Driving

For this task ChatGPT [20] is used to generate a python function which should drive a
vehicle from its current position to a target position as quickly as possible and remain there
once it arrived. Listing 3 shows the synthesized code after a few iterations. Figure 12 shows
the distance from the vehicle to the target for the corresponding time steps on the left and
the 2D trajectory of the vehicle on the right. The generated code is only partially successful:
while it aims for and gets close to the target, it fails to stop and instead loops around it.

1 def get_action (vehicle : Vehicle , target : Vec2d) -> int:
2 # Get the current position of the vehicle
3 current_position = vehicle .s()
4

5 # Calculate the vector from the vehicle ’s current position to the
target

6 target_vector = target - current_position
7

8 # Calculate the angle between the current heading of the vehicle and
the target vector current_heading = vehicle . heading ()

9 angle_to_target = math. degrees (math.atan2 (target_vector .y,
target_vector .x)) - math. degrees (current_heading)

10

11 # Normalize the angle to be between -180 and 180 degrees
12 if angle_to_target > 180:
13 angle_to_target -= 360
14 elif angle_to_target < -180:
15 angle_to_target += 360
16

17 # Decide action based on the angle to the target
18 if angle_to_target > 10:
19 return 1 # Turn right
20 elif angle_to_target < -10:
21 return -1 #Turn left
22 else:
23 return 0 # Maintain current heading

Listing 3 A python function that aims to drive a vehicle to the target in 2D space - see description
in the text.

3.8.2.3 Baba is You

Baba is you is a complex puzzle game in which a 2D grid environment is manipulated by the
player to reach a given goal. The environment consists of word blocks and corresponding
entities that can be pushed. By placing word blocks next to each other, rules can be formed.
These rules are active as long as the given word block sequence remains intact. This way,
players can change how objects behave, which objects they control, or which conditions must
be satisfied to win the level.

For our experiments, we used a Python version [23] of the Keke is You AI framework [24].
Similar to the other games, we prompted the LLM to provide a policy given a short description
of the game and the initial state of the level. The function to be written should use the
current state as input and provide movement direction.

24261

32 24261 – Computational Creativity for Game Development

Figure 12 Left: The distance of the vehicle to the target for the corresponding time steps. Right:
The 2D trajectory of the vehicle. It starts at the green point and aims for the red target. However,
the generated code fails to stop the car close to the target, and instead will endlessly loop around it.

In our tests, the agent was able to solve simple test levels as the one shown in Figure 13.
The policy returned by the optimization is shown in Listing 4. Complex object manipulation
to change the rules while playing a level has not occurred. This may be overcome by future
versions of the used LLM models or more complex prompting techniques.

1 def program (state):
2 state = state. tolist ()
3 for i in range(len(state)):
4 for j in range(len(state[i])):
5 if state[i][j] == ’b’:
6 x, y = i, j
7 elif state[i][j] == ’f’:
8 fx , fy = i, j
9

10 # Find the nearest word tile with the "Win" property
11 for i in range(len(state)):
12 for j in range(len(state[i])):
13 if state[i][j] in [’B’, ’b’] and \
14 (i-1 >= 0 and state[i -1][j] == ’3’) or \
15 (j+1 < len(state [0]) and state[i][j+1] == ’3’) or \
16 (i+1 < len(state) and state[i+1][j] == ’3’) or \
17 (j-1 >= 0 and state[i][j -1] == ’3’):
18 return "Right" if j > fy else "Left"
19

20 # If no "Win" tile is found , move towards the flag
21 dx = x - fx
22 dy = y - fy
23 if dx != 0:
24 return "Up" if dx < 0 else "Down"
25 elif dy != 0:
26 return "Right" if dy > 0 else "Left"
27 else:
28 return "Wait"

Listing 4 A python function that solves the first level of the Keke AI PY framework.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 33

Figure 13 First demo level of the Keke AI Py framework.

3.8.2.4 Tabletop Games Framework (TAG)

The TAG framework is a bespoke Java research framework that supports the implementation
of multiplayer tabletop board games. The ultimate goal is to use the heuristic-generation
algorithm outlined in Algorithm 1 on all games in the framework. This introduces a number
of new challenges:

The games are in general more complex than the simple one-player games in previous
sections.
Related to this, they are also inherently multiplayer. As such there is implicit opponent
modeling required for good play strategies. The environment is no longer a ‘simple’
stationary MDP, but is actively adversarial.
The TAG framework has a number of local libraries and coding conventions; for example
decks of cards are implemented via Deck<> or PartialObservableDeck<> parameterised
classes. These are not likely to be present in the LLM training data to any degree, and
require the LLM to generalise to unseen software architecture details. This contrasts to
the straightforward Python with mostly standard libraries of the game in earlier sections.

Two games were selected for initial experimentation. Tic-Tac-Toe is a simple 2-player
game, and Love Letter is a slightly more complex 2-6 player game that requires reasoning
over hidden information held by the other players.

The best Tic-Tac-Toe heuristic achieved a 65% win rate against a simple One Step Look
Ahead (OSLA) agent, and consisted of 90 lines of code (omitted here for brevity). For Love
Letter it was often difficult to get the LLM to generate valid code, let alone a heuristic that
could win a game, although the best agents were able to beat random opponents.

Listing 5 illustrates the additional information needed in the prompt to obtain a working
heuristic for Tic-Tac-Toe, including clear instructions not to leave TODO comments, exactly
what dependencies need to be imported and details of the game-specific API that can be
used to extract useful information.

Tic-Tac-Toe is an old, simple and popular game that is well-embedded in the training
data. As such there was no need to explain how to play in the prompt. This was not true
for Love Letter, and additional lines had to be added to explain how the game was played
(and won or lost).

24261

34 24261 – Computational Creativity for Game Development

1 You are playing Tic Tac Toe.
2 Your job is to write the evaluation logic to help an AI play this game.
3 Don ’t leave parts unfinished or TODOs.
4

5 First , write a java class called TicTacToeEvaluator class , with only a
single function with this signature :

6 - public double evaluateState (TicTacToeGameState gameState , int playerId
)

7 This is a heuristic function to play Tic Tac Toe. The variable gameState
is the current state of the game , and playerId

8 is the ID of the player we evaluate the state for. Write the contents of
this function , so that we give a higher numeric

9 evaluation to those game states that are beneficial to the player with
the received playerId as id. Return :

10 - 0.0 if player playerId lost the game.
11 - 1.0 if player playerId won the game.
12 If the game is not over , return a value between 0.0 and 1.0 so that the

value is close to 0.0 if player playerId is close to losing ,
13 and closer to 1.0 if playerId is about to win the game.
14 Take into account the whole board position , checking for lines that are

about to be completed , and possible opponent moves.
15 You can use the following API:
16 - In TicTacToeGameState , you can use the following functions :
17 - GridBoard <Token > getGridBoard (), to access the board of the game.
18 - Token getPlayerToken (int playerId), to get the Token of the player

passed as a parameter .
19 - boolean isGameOver (), returns true if the game is finished .
20 - int getWinner (), returns the Id of the player that won the game , or

-1 if the game is not over.
21 - int getCurrentPlayer (), returns the Id of the player that moves

next.
22 - GridBoard <Token > has the following functions you can also use:
23 - int getWidth (), to return the width of the board.
24 - int getHeight (), to return the height of the board.
25 - Token getElement (int x, int y), that returns the Token on the

position of the board with row x and column y.
26 - Token represents a piece placed by a player . Which player the token

belongs to is represented with a string . This string
27 is "x" for player ID 0, and "o" for player ID 1.
28 - Token(String) allows your to create token objects for any

comparisons .
29 - String getTokenType () returns the string representation of the token

type.
30 Assume all the other classes are implemented , and do not include a main

function . Add all the import statements required ,
31 in addition to importing games. tictactoe . TicTacToeGameState , core.

components . GridBoard and core. components .Token

Listing 5 Prompt required to obtain valid code for a Tic-Tac-Toe heuristuic in TAG

The need to hand-craft these prompts for each game does not achieve the desired scalability
across the suite of games within TAG. To resolve this at the tail end of the seminar, two new
TAG-specific elements were implemented to augment the process:
1. Automatic extraction of the game-specific APIs. This uses Java Reflections to extract

information on the methods and associated Javadoc on the game state object. This
automatically generates the section of the prompt in Listing 5 from line 15 to the end;

2. Automatic rulebook digestion. This takes as input the PDF of the game rulebook. An
approach inspired by [25] in a Minecraft-like environment is used. The rulebook is first
broken down into chunks of 1000 or 2000 words to fit within the input of any LLM. Each
chunk is then provided in turn to the LLM and two questions asked in separate prompts:
a. Summarise in 200 words or less the information in this text about the game rules. Do

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 35

not include information on strategies to play the game.
b. Summarise in 200 words or less the information in this text about strategies and tips

to play the game well. Do not include information on the game rules.
This generates two sets of data, one on the rules, and one on tips to play the game well
(as these are often included in the rule book). Each of these sets is then fed to the LLM
with a prompt to, ‘Summarise this information in 500 words or less.’. This provides an
additional two blocks of text to include in the prompt used in the main loop of Algorithm
1 that explain the rules of the game, and advice on how to play.

These new tools enable a more scalable and game-agnostic process to be run on all games
that we plan to report results for in future work after the seminar.

3.8.2.5 Procedural Content Generation (PCG)

Figure 14 A maze generated with a Python function from ChatGPT, where 0s represent the
path and 1s represent walls.

PCG is a widely studied area in game research [21, 22]. In this experiment, we investigated
whether it is possible for an LLM to synthesize Python functions that generate diverse content
that can then be used in games. To evaluate this using a simple example, we prompt ChatGPT
to return functions that can generate random mazes that meet specified design objectives.
Figure 14 shows a maze generated using the Python function that ChatGPT returned.

The prompt advised ChatGPT to use the longest shortest path objective to guide the
maze generation process. This objective encourages intricate and interesting mazes, but
ChatGPT ignored the hint. Instead, the generated code (not shown in this report) was
overly simple, placing zeros and ones in each cell with a given probability while ensuring
that the start and end points were not on wall cells. There are much better solutions to
maze generation with the specified objective, but our program search implementation failed
to find them.

24261

36 24261 – Computational Creativity for Game Development

3.8.3 Conclusion

In this working group, we studied and evaluated the current possibilities of using LLMs for
program search in the area of games for various applications. Previous work was mostly
limited to a single problem or game without being easily transferable to other domains, as
the DSL had to be adapted. We demonstrated that LLMs can overcome the problem of
combinatorial explosion of search spaces constructed with predefined DSLs, and that LLMs
are able to synthesize programmatic policies in Python for the Minatar domain, which was
not possible with a custom DSL and previous methods. Furthermore, we have shown that
this framework can be easily adapted to different applications by modifying the prompts,
and that it often provides reasonable results even without much customization.

We also observed limitations in the quality of the generated code. For example, in the
simple 2D vehicle driving task, the generated code drove the car to the target but then
failed to stop. We believe limitations such as this could be overcome with more sophisticated
search and better prompt engineering, but the results so far give an idea of the limitations of
what can be achieved with relatively little effort.

For future work, we plan to extend the study and evaluate more LLMs on all domains so
that deeper conclusions can be drawn about LLM-based program search for games.

References
1 Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., ... & Zaremba, W.,

Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.
2 Gulwani, S., Polozov, O., & Singh, R., Program synthesis. Foundations and Trends® in

Programming Languages, 4(1-2), 1-119, 2017.
3 Polozov, O., & Gulwani, S., Flashmeta: A framework for inductive program synthesis.

In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 107-126, 2015.

4 Butler, E., Siu, K., & Zook, A., Program synthesis as a generative method. In Proceedings
of the 12th International Conference on the Foundations of Digital Games, pp. 1-10, 2017.

5 Silver, T., Allen, K. R., Lew, A. K., Kaelbling, L. P., & Tenenbaum, J., Few-shot bayesian
imitation learning with logical program policies. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 34, No. 06, pp. 10251-10258, 2020.

6 Marino, J. R., Moraes, R. O., Oliveira, T. C., Toledo, C., & Lelis, L. H., Programmatic
Strategies for Real-Time Strategy Games, 2021.

7 Kreminski, M., & Mateas, M., Opportunities for Approachable Game Development via
Program Synthesis. AIIDE Workshops, 2021.

8 Cook, M., Software Engineering For Automated Game Design. 2020 IEEE Conference on
Games (CoG), 487-494, 2020.

9 Todd, G., Padula, A., Stephenson, M., Piette, E., Soemers, D.J., & Togelius, J., GAVEL:
Generating Games Via Evolution and Language Models. arXiv preprint arXiv:2407.09388,
2024.

10 Hu, C., Zhao, Y., & Liu, J., Generating Games via LLMs: An Investigation with Video
Game Description Language. arXiv preprint arXiv:2404.08706, 2024.

11 Anjum, A., Li, Y., Law, N., Charity, M., & Togelius, J., The Ink Splotch Effect: A
Case Study on ChatGPT as a Co-Creative Game Designer. In Proceedings of the 19th
International Conference on the Foundations of Digital Games, pp. 1-15, 2024.

12 Hu, S., Huang, Z., Hu, C., & Liu, J., 3D Building Generation in Minecraft via Large
Language Models. arXiv preprint arXiv:2406.08751, 2024.

13 Liu, M., Yu, C. H., Lee, W. H., Hung, C. W., Chen, Y. C., & Sun, S. H., Synthesizing
Programmatic Reinforcement Learning Policies with Large Language Model Guided Search.
arXiv preprint arXiv:2405.16450, 2024.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 37

14 Tang, H., Key, D., & Ellis, K., Worldcoder, a model-based llm agent: Building world models
by writing code and interacting with the environment. arXiv preprint arXiv:2402.12275,
2024.

15 Romera-Paredes, B., Barekatain, M., Novikov, A., Balog, M., Kumar, M. P., Dupont, E., ...
& Fawzi, A., Mathematical discoveries from program search with large language models.
Nature, 625(7995), 468-475, 2024.

16 Gaina, R. D., Balla, M., Dockhorn, A., Montoliu, R., & Perez-Liebana, D., Design and
implementation of TAG: a tabletop games framework. arXiv preprint arXiv:2009.12065,
2020.

17 Young, K., & Tian, T., Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

18 Eberhardinger, M., Maucher, J., & Maghsudi, S., Learning of generalizable and interpretable
knowledge in grid-based reinforcement learning environments. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment, Vol. 19, No. 1,
pp. 203-214, 2023.

19 Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., ... & Ganapathy,
R., The Llama 3 Herd of Models. arXiv preprint arXiv:2407.21783, 2024.

20 Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., ... & McGrew,
B., Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

21 Shaker, N., Togelius, J., & Nelson, M. J., Procedural content generation in games, 2016.
22 Summerville, A., Snodgrass, S., Guzdial, M., Holmgård, C., Hoover, A. K., Isaksen, A.,

... & Togelius, J., Procedural content generation via machine learning (PCGML). IEEE
Transactions on Games, 10(3), 257-270, 2018.

23 Dockhorn, A., Keke AI Py, https://github.com/ADockhorn/Keke-AI-PY, 2024
24 Charity, M. & Togelius, J., Keke AI Competition: Solving puzzle levels in a dynamically

changing mechanic space. 2022 IEEE Conference On Games (CoG). pp. 570-575, 2022.
25 Y. Wu et al., SPRING: GPT-4 Out-performs RL Algorithms by Studying Papers and

Reasoning’, Arxiv Preprint Arxiv:2305.15486, 2023.

3.9 Computational Creativity for Game Production: What Should Be
Left Untouched?

Christian Guckelsberger (Aalto University, FI), João Miguel Cunha (University of Coimbra,
PT), Alena Denisova (University of York, GB), Setareh Maghsudi (Ruhr-Universität Bochum,
DE), Pieter Spronck (Tilburg University, NL), and Vanessa Volz (CWI - Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Christian Guckelsberger, João Miguel Cunha, Alena Denisova, Setareh Maghsudi, Pieter Spronck,
and Vanessa Volz

Artificial Intelligence (AI) has been an integral part of video games for a long time, supporting
both offline production (e.g. distribution of game fauna) and online features (e.g. automated
difficulty adjustment). The relationship between academic AI research and industry use,
however, has rarely been straight-forward; the produced prototypes are often not ready for
production and clash with industry requirements [6]. A closer alignment has been inhibited
by academic pressures for radical innovation, but also by academics not motivating their
research through empirical data on industry requirements or direct discussion with industry
stakeholders. Initiatives such as this Dagstuhl Seminar seek to counteract this trend, which
has resulted in academic and industry AI development co-existing with limited mutual

24261

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

38 24261 – Computational Creativity for Game Development

impact; while this is problematic in terms of research funding, amongst other factors, it has
so far caused arguably little harm to people.

This situation has profoundly changed with the maturity of AI usable in creative tasks.
Such creative or generative AI (GenAI) has had an unprecedented impact on creative
professionals in many domains, including games. Academic inquiry revealed an “adapt-or-
die”-type of situation amongst both established professional creatives [8] and newcomers
[1] to the game industry. Exploring the possibilities of this new technology enthusiastically,
they also expressed tremendous concern about ethical issues such as data sourcing and
compensation, and reported feeling anxious about the consequences for games as a medium
and their professional futures. These inquiries have revealed another, particularly concerning
phenomenon: in contrast to traditional AI narratives, seeking to automate tedious or even
dangerous activities and making more space for meaningful work, GenAI is relentlessly
moving into spaces of human self-realisation, with the capacity to (semi-)automate creative
activities which have been anchors of meaning-making for creative professionals. A loss
of such meaning-making activities related in many ways to personal well-being and, in
consequence but not less importantly, may threaten the sustainable innovation of games as
culturally and economically important artefacts.

Against the backdrop of this development, the goal of this working group was to better
understand which creative practices in game production could be supported or even replaced
by AI, and which are better left untouched. We hold that the only reasonable way to obtain
this data is through direct inquiry with creatives in game production. The devised project
addresses three gaps in current research:
1. Existing work has identified many facets of creativity in play [e.g. [2, 4, 5]], but we lack a

thorough understanding of creativity in game development informed by direct inquiry
with professionals;

2. While research on the impact of GenAI is gaining momentum, insights on game industry
specifically are scarce. Industry-specific insights, however, are crucial, as attitudes toward
and working practices with AI in games differ vastly from other industries, partly because
the adoption and even driving of new technologies has a long tradition in games;

3. Existing empirical work within games focuses on identifying the use of existing systems
(especially large-language models, text-to-image generators) and opportunities for im-
proving system design to optimise artefact quality and productivity; to the best of our
knowledge, no work has considered which creative processes professionals would wish to
be automated by present and future systems, free from concerns of technical feasibility
and wider ethical considerations. In particular, existing work in computational creativity
research [e.g. [3, 5, 7, 9]] has identified games as a treasure trove of AI challenges, but
without consideration of the impact on creative professionals.

In the course of this work group, we have conducted a comprehensive, although likely
not exhaustive, literature review of research identifying different types of creative processes
in games. Moreover, we have iterated a list of questions for game practitioners to identify
which creative activities they engage in, and which of those they would be happy to be
supported partially or even taken over entirely by either a person, or an AI. Following common
practices in creativity studies, we do not impose a particular definition of creativity, but
ask respondents to reflect on which understanding of creativity has informed their answers.
At this point, it is unclear whether a survey or semi-structured interviews are the more
appropriate means of data collection. As a next step, pilot studies with people from our
target demographic and a careful weighing of the pros and cons of each data collection
approach (e.g. depth of inquiry vs. size of sample population) will inform the final format.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 39

We hope that this research will support existing efforts in giving creative professionals a
voice in the development of AI, and provide empirical data for AI researchers to reflect on
and be held accountable for the implications of their work.

References
1 Boucher, J.D., Smith, G. and Telliel, Y.D., Is Resistance Futile?: Early Career Game

Developers, Generative AI, and Ethical Skepticism. In Proceedings of the CHI Conference
on Human Factors in Computing Systems, pp. 1-13, 2024.

2 Hall, J., Stickler, U., Herodotou, C., and Iacovides, J., Player conceptualizations of creativity
in digital entertainment games. Convergence: The International Journal of Research into
New Media Technologies, 26(5-6) pp. 1226–1247, 2020.

3 Liapis, A., Yannakakis, G. and Togelius, J., Computational game creativity. 5th International
Conference on Computational Creativity (ICCC), 2014.

4 Meskin, A., Videogames and Creativity. In The Aesthetics of Videogames (pp. 95-111).
Routledge, 2018.

5 Moffat, D.C., The Creativity of Computers at Play. In Proceedings of the 2nd International
Symposium on Computational Creativity (CC2015), pp. 30-34, 2015.

6 Pfau, J., Smeddinck, J.D. and Malaka, R., The case for usable AI: What industry profes-
sionals make of academic AI in video games. In Extended Abstracts of the 2020 Annual
Symposium on Computer-Human Interaction in Play (CHI PLAY), pp. 330-334, 2020.

7 Ventura, D., Beyond Computational Intelligence to Computational Creativity in Games.
Proc. Conference on Computational Intelligence and Games (CIG), 1–8, 2016.

8 Vimpari, V., Kultima, A., Hämäläinen, P. and Guckelsberger, C., An Adapt-or-Die Type
of Situation: Perception, Adoption, and Use of Text-to-Image-Generation AI by Game
Industry Professionals. In Proceedings of the ACM on Human-Computer Interaction, 7
(CHI PLAY), pp.131-164, 2023.

9 Zook, A., Riedl, M. O. and Magerko, B., Understanding Human Creativity for Computational
Play. In Proceedings of the Second International Conference on Computational Creativity
(ICCC), pp. 42–47, 2011.

3.10 Personal AcCompanion AI
Greta Hoffmann (TH Köln, DE), João Miguel Cunha (University of Coimbra, PT), Chengpeng
Hu (Southern Univ. of Science and Technology - Shenzen, CN), Leonie Kallabis (TH Köln,
DE), and Pieter Spronck (Tilburg University, NL)

License Creative Commons BY 3.0 Unported license
© Greta Hoffmann, João Miguel Cunha, Chengpeng Hu, Leonie Kallabis, and Pieter Spronck

By our nature, we are social creatures. From an early age, we seek social connection - starting
with our closest family but at an early age expanding to relatives and social groups within
our reach. Therein, we instinctively seek and enjoy the presence of other people, but more
than that we are curious to get to know them, their lives, struggles, and solutions, and
find out how we relate to them. This strong intrinsic orientation towards connection and
relatedness emerges from collaboration having served as a dominant survival trait for our
species.

Historically, we have always created tools not only for survival but also for mirroring
and self-reflection (masks, plays, stories, figurines). Thus, as the technology of artificial
intelligence rises in prevalence, complexity, and competency, it is natural that we see an
increasing amount of AI tools modeled into human reflections (look like human art, sound like

24261

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

40 24261 – Computational Creativity for Game Development

human speech, read like a human conversation). And, given our social nature, intentionally
or not, these tools are now also used to compensate for human connection – girlfriend
AIs (e.g. Muah AI, DreamGF), conversation partners/companions (e.g Replika), and life
coaches/mental health mentors (e.g. Wysa, Woebot). Especially since the pandemic, reports
around the increase (sometimes also referred to as an “epidemic”) of profound feelings of
loneliness have increased significantly [1]. This coinciding with the emergence of a new level
of LLMs with free access to the public created a natural and intuitive answer to this problem.
But right now all of these interactions are in their experimental phase. We can’t yet fathom
the mid-to-long-term impact of unsupervised human-ai interactions and the effects that the
formation of these (currently) mono-directional) bonds will have. Also, while most of such
humanized AIs currently appear in the context of the business world, targeting computer
affine, middle-aged people, and their needs, it is only a matter of time before the technology
is used to address the needs and desires of more vulnerable groups - specifically elderly people
and children. Embracing this reality will mean that designers and developers should be given
a foundation of ethical implications, risks, and potentials in the form of guidelines that will
make such human-AI interactions safe and beneficial.

Summarizing, if we want to make the most use of the huge potential that human-facing
AI has to offer in terms of entertainment, companionship, and therapeutic value, we have to
anticipate and assess risks to derive appropriate restrictions and recommendations for best
practices that can inform human-AI interaction design toward an overall prosperous outcome
(eudaimonia). In this abstract, we outline the results of our working group, touching on
general design considerations going into AI design from a relationship perspective, a discussion
around the prerequisites for AI to be able to maintain a friendship-based relationship, and
specific considerations that should be taken into consideration when the human in the
human-AI relationship is a minor.

3.10.1 Avenues of Thought – Examples and Attribute Dimensions

We first set out to gain a general overview of the prevalent implicit vision of “typical”
human-ai relationships. For this, we collated a table of prominent examples of AI (or AI-like
- e.g. magic) companions portrayed within fictional media over the last century, as well as
currently existing AI companion (or companion-like) software. Therein we differentiated
between their “type” (what are they described as - e.g. a fictional creature like a “fairy” or a
robot or a construct), their “function” (if a creator or master explicitly gave them one), and
their social role(s)/relationship(s) within the story/medium.

Based on the list of collated examples, we found that throughout there was a prevalent
“lopsidedness” when it came to the power dynamics within the social roles. We discussed
potential reasons for this - a main consideration here was that the examples mostly stem
from leisure-time media. In entertainment, humans seek relief from their daily struggles - so
it is natural that the fictional ai-characters are explicitly designed not to challenge the power
and independence of the main avatar - the narrative vessel that the consumer is offered to
find themselves in. Interestingly, while most of the AI characters were placed in a somewhat
subservient or impeded role and few in a superior (and therein most often antagonistic) role
we found only one example that could be considered a relationship on eye level: Cortana
from the HALO video game series. These considerations led to a broader discussion on the
potential and meaning of “friendship” within human-AI interaction.

In conclusion, based on the variety of relational concepts that humans and AIs can have
with each other - many of which are not friendship-based, we decided for the purposes
of our considerations to broaden the term “companion AI” to allow for a bigger range of

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 41

relationships: accompanion AI. This term was chosen to focus more on the general facet that
one is accompanied by the AI for a certain time or towards a certain goal - instead of limiting
our thought processes to AIs that are limited to serving as a companion in a friendship sense.

3.10.2 Attribute Dimensions for Human-AI-Relationship Design

From the collated list of examples, we extracted dimensions of fundamental attributes that
should be considered and intentionally defined within the design of a human-ai relationship:

The first dimension we discussed related to Goals / Agency: what drives the AI? How
do the goals of the human and AI align? If the AI is designed as a human-oriented tool, these
goals would be to help/care for the human and thus be directly aligned with the designer’s
intention. But given an AI with an agency of its own, the question arose of how those goals
could align. We explored some subfactors that would play into the prosperity/eudaimonia
of the AI: health (meaning maintenance and longer runtimes), knowledge, and satisfaction.
Prerequisites to all of these would require the AI to have the capability of asking meaningful
questions based on its own interest and to be allowed to act in a way that it can follow its
own, personal agenda. In terms of satisfaction, additional design decisions would need to be
taken, such as how it can be achieved, who is able to give it. Also, how is it given? And
for what? Also, we deemed that satisfaction can’t be achieved without emotions. Thus, a
concept for those would have to be modeled as well.

The second dimension relates to Skills/Functions: what is the AI able to do as a
meaningful accompanion? Examples we looked at were: Assisting with specific tasks/problems,
adding/supplementing missing skills, giving quests, providing access to assets, serving as an
outside reference/mirror, and providing immediate help in emergencies.

Another relevant dimension to consider relates to Appearance / Embodiment: how
is the AI visually represented? Relevant dimensions here would include: Size, shape, color
scheme, realistic vs cartooney presentation, and unwanted effects like the uncanny valley [?].

Relating to this, a similar dimension would look at the internal shape of the AI, its
Personality: how does the AI initially react to certain requests/topics? How does this
reaction change over time? Given the current dominance of subservient AIs, it would be
interesting to research the effects of reactive traits that might intuitively be perceived as
“unpleasant”, ”strong-willed” or “disagreeable”. Finally, the dimension of the biggest relevance
to our discussion was Relationships: how does the AI relate to the human? This included
subdimensions like its Nature (Non-Adversarial/Adversarial), Duration (When/how does it
start? When/how does it end? And its intrinsic Role relating to hierarchy, dependence, and
power balance (Human looking up to AI: e.g. Guardian, oppressive antagonist, Relationship
at Eye level: Friend, Coworker, Human looking down on AI: Servant, Pet, Sidekick, Assistant
(can be at eye level but there is a downwards component).

We found further interesting typologies that offer additional perspectives and dimensions
on companion design that will be incorporated into a future model ([3], [4], [5], [6]).

3.10.3 First Draft for an Accompanion AI for children

To further explore these considerations, we chose to focus on a case that directly touches upon
the more sensitive aspects of human-AI interaction: design considerations for accompanion
AIs targeting children. Humans seek connection to other humans. The aftermath of the
pandemic, particularly on young people, has shown the adverse effects that the loss of these
connections can have and the need to relearn certain social skills. Also, especially in Western
countries, children grow up in decreased family sizes and with fewer social bonds. Thus,

24261

42 24261 – Computational Creativity for Game Development

they lack opportunities to experience/hear about alternative solutions to various problems in
social settings.

Depending on the age of the child various social problems can arise within the family or
with peer bonding that would warrant psychological intervention. But not every child or
adolescent is in close vicinity to an environment where this can beneficially be provided. Also,
humans instinctively learn by observing and imitating others (“monkey see, monkey do” [?].
Thus, there is a strong potential for the usefulness and beneficial effects of well-designed AI
companions, especially ones that can be somehow observed, for children who are struggling.
But, especially when it comes to children, those potentials will have to be weighed against the
risks and potentially detrimental effects will have to be prevented through strong regulations.

The biggest potentials we workshopped were: being able to provide perspective: the
ability to “sneak-preview” into different (artificial) households and see various rules and
norms enacted - including their consequences. This would allow children 1. to perceive
different behavior options for the situations they are in and that currently produce undesirable
outcomes for them, 2. learn that different solutions exist to similar problems, 3. experience
comparative situations to better assess the gravity of its own context, 4. mimic what the
companions do. With a built-in example mode that builds on mimicry, by watching the AI
accompanion do various things on its own accord, the child might also be more motivated to
play with friends from their own world, take care of their siblings, help their parents and
follow their own activities and interests. A different facet of potential would be the ability
of an AI to catch on to abuse happening in a household (through wordings and certain
speech patterns of the child) and being able to report such indicators to the respective
child-protection services. Finally, the benefits of reflecting on events through talking are the
foundation of psychology. Since mental health resources - especially for children - are lacking
in a lot of countries and many families might not be able to afford them or lack access, a
suitably designed AI might be able to generally improve the overall mental well-being of its
users simply by being available and able to reflect and respond in an empathic way.

Figure 15 Dual Perspective Application; Multiple Companions (right)

With these potentials in mind, related risks are: that the provided perspectives might
showcase values or principles that the parents would not wish their children to get in contact
with based on cultural differences and differing value systems. Also, there might be a risk
that automatically triggered warning systems for abuse might stress/overload current CPA
systems - especially given the statistical likelihood of erroneous reports. Furthermore, this
topic poses the question of the rights and obligations of the company/institution providing
the AI when it comes to data collection and analysis. Finally, if there is a service that
provides everything that a child (or grown-up) could hope for in terms of their social needs,
there is a danger of addiction and the system replacing the necessary interactions in real life,
thus hampering the initially desired developments.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 43

To address such risks, strong regulations will have to be set in place. Such regulations
would concern the duration of interaction per day/week and the criteria based on which
limitations are set in place. Also, the service would need to provide a solid and transparent
data protection plan. Reactions of the AI to certain phrases of the child that can raise concern
would need to have a human reflection/assessment layer before triggering action. Also, parents
would need access to a transparent selection process for the various character/environment
scenarios that their child would interface with. It might be beneficial to pre-consider modes
for a psychiatrist-parent interaction for setting up the game/ companion(s) and interpreting
data concerning certain interactions in the game. In providing a solidly designed app that
has children’s well-being in mind, there should be a focus on disincentivizing unsupervised
clone apps (e.g. by making the official Accompanion AI a clinically tested app that in the
best case would be free to use (e.g. via a state-funded solution)

3.10.4 Conclusions

A possibility for building a first testing environment could be by using accompanion AI
in a game setting. Games might serve as a suitable environment for testing companion
systems. They are understood as experimental and separate from reality, thus a certain
distance to what the AI will say or do is a given. Through promoting research into this
direction, the learnings can also be used to make NPCs more natural and allow the players
to form a strong bond with the NPCs (as a friend or rival). Thus, a social sandbox type
game might offer the player the possibility to not only explore different social relationships
but also the environment the exist in. In an attempt to create a more believable game world,
the behavior of AI companions would then be based on: the aforementioned companion
characteristics, their goals/motivations but also past interactions as well as, ultimately, the
goal of the designer(s).

References
1 Johnson, S. (The Guardian), WHO declares loneliness a ‘global public health con-

cern’, Thu 16 Nov 2023 09.00 CET, 2023. https://www.theguardian.com/global-
development/2023/nov/16/who-declares-loneliness-a-global-public-health-concern, accessed
22.08.2024.

2 Mori, M., MacDorman, K. F., & Kageki, N., The uncanny valley [from the field]. IEEE
Robotics & automation magazine, 19(2), pp. 98-100, 2012.

3 Warpefelt, H., and Verhagen, H., Towards an updated typology of non-player character
roles. Proceedings of the international conference on game and entertainment technologies,
2015.

4 Rato, D. and Prada, R., A taxonomy of social roles for agents in games. Entertainment
Computing–ICEC 2021: 20th IFIP TC 14 International Conference, ICEC 2021, Coimbra,
Portugal, November 2–5, 2021, Proceedings 20. Springer International Publishing, 2021.

5 Emmerich, K., Ring, P. and Masuch, M., I’m glad you are on my side: How to design
compelling game companions. Proceedings of the 2018 Annual Symposium on Computer-
Human Interaction in Play, 2018.

6 Lubart, T., How can computers be partners in the creative process: classification and
commentary on the special issue. International journal of human-computer studies, 63(4-5),
365-369, 2005.

7 Sales, H., More than “monkey see, monkey do”: Aspects of language use in engineering
and manufacturing process web pages. 2010 IEEE International Professional Comunication
Conference. IEEE, 2010.

24261

44 24261 – Computational Creativity for Game Development

3.11 Game Asset Generation
Leonie Kallabis (TH Köln, DE), Chengpeng Hu (Southern Univ. of Science and Technology -
Shenzen, CN), and Matthias Müller-Brockhausen (Leiden University, NL)

License Creative Commons BY 3.0 Unported license
© Leonie Kallabis, Chengpeng Hu, and Matthias Müller-Brockhausen

This working group started as an exploratory overarching group looking at generative AI
in arts and crafts. From an initial discussion in this overarching group, three subgroups
(see 3.15 and 3.16) formed with different focus topics. In this section, we report on the
subgroup focused on generative AI in game asset generation.

Games contain a variety of different asset types such as textures, sounds, animations,
shaders, and so on. Within this group, we decided to focus on graphical assets, also known
as sprites. Basically, these are graphical elements that represent a visual state of a game
object, such as a game character. Sprites are usually collected in sprite sheets.

The field of generative AI for image generation is developing rapidly, with image generation
platforms such as Midjourney [5], Stable Diffusion [6], and DALL-E [7] producing appealing
results. However, creating sprites requires a different set of considerations than creating
images. The generated sprites must fit the game, meaning that they must be consistent
with the game’s aesthetics, mechanics, sound design, narrative, theme, existing assets, and
more. Recent research has explored the use of different approaches to sprite generation.
For example, generating pixel art sprite sheets using deep learning from sketches [2], or
game icons using Generative Adversarial Networks (GANs) [3], have shown promising results.
However, there have been problems with assets being perceived as realistic by humans [3].

Within this working group, we focused on two distinct requirements for sprite generation
and formulated the following guiding questions for our investigation:

How can game asset generation account for properties of different game types?
Considering visual cues on character properties or environmental functionality (e.g.
slippery ice blocks)

How can we generate multiple game assets that follow the same art style?
Ensure consistency within generated assets, such as creating a pixel art asset set that
consists of multiple sprites that look like they were created by the same artist.

One of the challenges of generating images from text is translating the user’s intent
into the prompt given to the model [?, Liu2022] Problems can arise when the result is not
what is expected, and the user is unable to modify the prompt to meet their expectations.
Liu et al.’s guidelines for image generation prompts suggest focusing on subject and style
keywords, while trying to select subjects that can complement the chosen style in terms of
level of abstraction and relevance to achieve good results [4]. Combining this guidelines with
properties to describe sprites we concluded a prompt should contain the object(s), an overall
topic, mood or the expected effect, the art style and a theme. Sprite sets could be created
from the generation of individual sprites, giving the user more flexibility in the objects they
want to include in the sprite sheet and modify them individually. To do this, we developed
categories that could be generated individually to create a sprite set: characters (avatar,
non-player characters, companions), objects (interactable objects, objects with a purpose,
decoration), environment, user interface etc.

We experimented with different diffusion models to see if they could consistently imitate
different styles. Four prompts for the pixel art style were created and ran with the vanilla
stable diffusion model and six fine-tuned pixel art models (64x [10], pixelArtRemond [11],
pixelartXL [13], pixel_f2 [12], realisticVision [14], texture [15]). Additionally, the Structural

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 45

Figure 16 Images generated with the prompt sprite of a green scary goblin, pixelart, 16bit. The
first two images were generated with the same model (64x), the third image with a different one
(pixelartXL).

Figure 17 Images generated with the prompt A massive, terrifying dragon with razor-sharp teeth
and claws. Its scales are a deep obsidian black, shimmering with an oily sheen. Smoke billows from
its nostrils, and its eyes glow with an infernal red light. The dragon is perched on a mountain peak,
its wings outstretched as if it is about to take flight. The landscape below is barren and scorched,
hinting at the dragon’s destructive power, pixelart, 16bit. The first two images were generated with
the same model (pixelartXL), the third image with a different one (pixel_f2).

Similarity Index (SSIM) [1], as a commonly used measure to compare generated images, was
used for comparison.

Figure 16 shows images generated for a goblin using a simple prompt, and shows that
the overall style is relatively consistent. For all models, the SSI was between 0.11 and 0.39,
showing a fairly good similarity for comparisons. Figure 17 shows images generated for a
dragon using a long, highly descriptive prompt. This example illustrates that the models are
able to produce similar results, but omit the style command completely to produce pixel art
images. Similar to the results for the goblin, the SSI between the models ranged from 0.07
to 0.22, giving slightly better similarity.

When comparing the images manually, they are somewhat consistent, but lack the
consistency to be convincing enough for showing the same game character, for example.

Our experiments showed that stable diffusion models can produce reasonably comparable
images. Looking to future research, the following question arises: How would a large(r)
group of people perceive generated sprites in terms of consistency - either on their own or
integrated into a game?

Assuming that sprite generation fulfills the properties mentioned above, interesting

24261

46 24261 – Computational Creativity for Game Development

possibilities for game design arise. While there are already games that use style changes as
part of their mechanics (for example: Degrees of Separation [8] and Titan Fall 2 [9]), such a
generator could allow for interesting on-the-fly adaptation of sprites.

References
1 Kaisei Fukaya, Damon Daylamani-Zad and Harry Agius. Evaluation metrics for intelli-

gent generation of graphical game assets: a systematic survey-based framework. IEEE
Transactions on Pattern Analysis Machine Intelligence, 2024.

2 Y. Rebouças Serpa and M. A. Formico Rodrigues. Towards Machine-Learning Assisted
Asset Generation for Games: A Study on Pixel Art Sprite Sheets. 18th Brazilian Symposium
on Computer Games and Digital Entertainment (SBGames), Rio de Janeiro, Brazil, 2019.

3 Rafal Karp and Zaneta Swiderska-Chadaj. Automatic generation of graphical game assets
using GAN. Proceedings of the 2021 7th International Conference on Computer Technology
Applications (ICCTA ’21), New York, USA, 2021.

4 Vivian Liu and Lydia B Chilton. Design Guidelines for Prompt Engineering Text-to-Image
Generative Models. Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (CHI ’22), New York, USA, 2022.

5 Midjourney. https://www.midjourney.com/home. Accessed: 2024-08-20.
6 Stable Diffusion Image Models. https://stability.ai/stable-image. Accessed: 2024-08-20.
7 DALL-E 3. https://openai.com/index/dall-e-3/. Accessed: 2024-08-20.
8 Degrees of Separation Steam Page. https://store.steampowered.com/app/809880/Degrees_

of_Separation/. Accessed: 2024-08-20.
9 Titanfall 2 Steam Page. https://store.steampowered.com/app/1237970/Titanfall_2/. Ac-

cessed: 2024-08-20.
10 64x model. https://civitai.com/models/185743/8bitdiffuser-64x-or-a-perfect-pixel-art-model.

Accessed: 2024-08-20.
11 Pixel Art.Remond. https://huggingface.co/artificialguybr/PixelArtRedmond. Accessed:

2024-08-20.
12 pixel_f2. https://stablediffusionapi.com/models/pixelf2. Accessed: 2024-08-20.
13 Pixel Art XL. https://civitai.com/models/120096/pixel-art-xl. Accessed: 2024-08-20.
14 Realistic vision. https://huggingface.co/stablediffusionapi/realistic-vision. Accessed: 2024-

08-20.
15 Texture. https://huggingface.co/dream-textures/texture-diffusion. Accessed: 2024-08-20.

3.12 Communal Computational Creativity
Antonios Liapis (University of Malta - Msida, MT), Alex J. Champandard (creative.ai
- Wien, AT), João Miguel Cunha (University of Coimbra, PT), Christian Guckelsberger
(Aalto University, FI), Setareh Maghsudi (Ruhr-Universität Bochum, DE), David Melhart
(University of Malta - Msida, MT), Johanna Pirker (LMU München, DE), Emily Short
(Oxford, GB), Hendrik Skubch (Square Enix AI & ARTS Alchemy Co. Ltd. - Tokyo, JP),
Tristan Smith (Creative Assembly - Horsham, GB), Tommy Thompson (AI and Games -
London, GB), and Vanessa Volz (CWI - Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Antonios Liapis, Alex J. Champandard, João Miguel Cunha, Christian Guckelsberger, Setareh
Maghsudi, David Melhart, Johanna Pirker, Emily Short, Hendrik Skubch, Tristan Smith, Tommy
Thompson, and Vanessa Volz

The last five years were a watershed moment in bringing AI technologies to the forefront
in applications, web browsers, dedicated (paid) services, but also in the public discourse,

https://www.midjourney.com/home
https://stability.ai/stable-image
https://openai.com/index/dall-e-3/
https://store.steampowered.com/app/809880/Degrees_of_Separation/
https://store.steampowered.com/app/809880/Degrees_of_Separation/
https://store.steampowered.com/app/1237970/Titanfall_2/
https://civitai.com/models/185743/8bitdiffuser-64x-or-a-perfect-pixel-art-model
https://huggingface.co/artificialguybr/PixelArtRedmond
https://stablediffusionapi.com/models/pixelf2
https://civitai.com/models/120096/pixel-art-xl
https://huggingface.co/stablediffusionapi/realistic-vision
https://huggingface.co/dream-textures/texture-diffusion
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 47

courtrooms, and creators’ circles. The research, financial, and collective interest is triggered
by important AI advances that manage to produce artifacts in domains we would consider
creative [1] (such as text, images, audio, movies, and code) via data-hungry AI models trained
on data which are available in the worldwide web but which are not intended as training
data. The dubious ethics of such practices and the closed-source nature of such trained
models leave AI academics and human creators upset and concerned [2, 3]. Beyond obvious
ethical issues of exploitation and copyright infringement, we identify a looming threat of
data scarcity. If current large AI models use the majority—if not the entirety—of the world
wide web, where would new training data come from? While new human data currently
takes the form of labels and annotations by crowdworkers in the Global South [4], it is not
unrealistic to envisage a near-future where exploited crowdworkers are required to produce
creative pieces or art to train AI models—without an intrinsic motivation to create.

Moreover, the availability of seemingly cogent AI outputs or the low-stakes interaction
with the AI (without needing technical expertise or cumbersome software libraries) has
changed human perspectives and processes in creative domains, education, and everyday
life. Indicatively, education has so far been realized via interactions between learner and
educator (in a top-down fashion) and via peer-to-peer collaboration. AI automation tends
to isolate a learner, placing them in an adversarial relationship with the educator who is
expected to act as a discriminator of AI-generated or AI-curated reports. Such activities
used to be social, communal efforts where sharing opinions and perspectives was critical for
satisfying the highest-level human needs [5] such as learning, creativity, or self-actualization.
We argue that human-human interaction, either via a peer-based bottom-up ideation process
or via some expertise gap (such as learner and educator or client and commissioned artist) is
threatened by trivialized AI-human interactions. These interactions are not only trivialized
because the AI output may seem novel initially but loses its novelty over time [6], or because
of the potential for factual errors [7]. We argue that such interactions are trivialized precisely
due to the speed of AI responses. In line with Kahneman’s distinction between fast and
slow thinking [8], instantaneous AI outputs with a complete artifact (e.g. an art piece)
hinder human slow thinking and block the potential for iteration, reframing [9], or mediated
consensus creation [10]. Creative thinking not only benefits from interventions by other
humans and external (even random) stimuli [11], but also consists of a slow, introspective,
autotelic process of self-doubt, frustration [12], trial and error, reflection [13] and Eureka
moments [14].

Through discussion, we identified three cases where a communal approach (with mean-
ingful human-human interaction) would have a strong impact: (a) education strategies that
counter tendencies of generative AI; (b) AI corporate strategies that empower their workers;
(c) art critique of the aesthetics of generative AI. Below, we report the high-level outcomes
of the discussions for these three use-cases.

3.12.1 Education in the age of Generative AI

An obvious challenge for educators in the current (and near-future) age of ChatGPT and
related AI solutions [15] is the writing of student reports in an automated or semi-automated
way. Automated processes for detecting AI-generated texts remain underwhelming [16], and
the potential for false positives in graded work makes such solutions unpalatable. Therefore,
more fundamental changes are needed towards modern pedagogies. Importantly, we identify
that demonizing AI and labeling it as a (blanket) taboo would likely have the opposite
outcome. Improving AI literacy, especially at a younger age, would instead be required
in order for learners to understand the strengths, weaknesses, and caveats of AI use in

24261

48 24261 – Computational Creativity for Game Development

their coursework but also in their everyday life. Ideally, such AI literacy would come from
inductive teaching that showcases to the learner firsthand how AI can fail at tasks that
demand creativity, knowledge synthesis and critical thinking.

At a tertiary education level, a likely strategy to counter reliance on generative AI requires
pivoting from assessment based on single-author reports towards more practical projects that
involve teamwork, as well as introducing peer assessment as a (non-graded) activity. This is
not applicable to all disciplines, admittedly, but would lend itself well for most game studies
and game development courses—except perhaps foundational courses on programming or
theory. As a more practical use-case for game development education, we formalized an
exercise that solicits the self-realization of biases and limitations of generative AI as well as
the benefits of collaboration between human experts in different fields. The exercise takes
the form and principles of a game jam [17], an intense game creation process where multiple
teams compete to make the best game in a short timeframe—often a couple of days. In this
exercise, a few teams would be formed with one human artist and one human programmer.
All other teams would either consist of one artist, who would be invited to use code generation
AI models [18] (and of course access all online resources and tutorials available to everyone),
or consist of one programmer who would be invited to use generated art for their game. For
the sake of implementability, the proposed exercise overlooks many other vital roles in game
development such as writer, game designer, or musician. We expect that the exercise would
highlight (a) the limited controllability and output novelty of generative AI and (b) the
unique ideas emerging through friction and negotiation with a human colleague.

3.12.2 New Company Practices with Generative AI

Unlike the education use-case, this working group adopted a more tech-optimistic view of
current (and likely future) AI technologies. Assuming that AI automation can reduce friction
and help collaboration between different sectors of a business, AI automation could be set up
in human-like ways. Such a setup would free human resources, leaving workers more free to
pursue fewer hours of intellectual work compared to many hours of menial work. Moreover,
if most tasks could be automated to a satisfactory—even if not human-competitive—level,
workers could move freely within the structure and take up different tasks while acting as a
human-in-the-loop for the AI handling that task. This flexibility would lower the chances
of a burnout and, coupled with fewer hours that consist only of meaningful (and ostensibly
rewarding) work, would lead to a happier workforce. Importantly, the envisaged solution
would require a different work structure with more empowered workers with incentives
to perform well, such as partnerships and company stocks. It is worth noting that the
envisioned solution overlooks a number of (more pressing) concerns, indicatively that (a)
menial tasks that could be automated would lead to jobs lost for people with these exact
skills, (b) current AI “automation” often involves humans-in-the-loop or training data from
exploited workers [4] who could remain overlooked (and unrecognized) in the envisioned work
structure. Therefore, for such company practices to be sustainable and ethical we presuppose
a workforce educated in AI and digital skills, as well as legislation and/or new standards
that leverage AI without exploitative practices.

3.12.3 Art Critique of AI Models

Taking a different view on AI literacy to the two previous use-cases, this workgroup identified
art appreciation as a way to value, critique and review Generative AI models in terms of
their output. Art practice is founded on such rotes, from individual letter correspondence

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 49

between artists [19], gallery visits by peers [20], and discussions within artistic brotherhoods
in the 1800s [21] and Discord servers in the 2020s [22]. Art historians, similarly, study the
trends of an art movement and the deliberate additions by an individual creator within that
context. Moving into the realm of AI models, the critique here would assess the workings of
the models and their internal biases—rather than deliberate brush strokes on one painting.

As with different creative domains (writing, painting, sculpture, etc.), a common language
is likely needed to review AI models and potentially different types of AI output such as
generative text, art, video, music, etc. We envision AI model reviews to focus more on use-
cases where the model performs well, along with recommendations for domains, applications
and aesthetics that the AI model is suited for. It is essential that such a vocabulary is not
imposed from the top down by computer scientists (or worse, the corporate shareholders
attempting to hype their product). Instead, this vocabulary and pertinent aesthetics should
emerge from the bottom up through cultural stakeholders. These stakeholders range from
amateurs experimenting with the new tools—some of this collaborative meaning-making
is already taking place on Discord servers [22]—to creatives and/or art experts such as
gallery curators. Reaching a consensus among these diverse cultural groups will likely not
be immediate or easy, but we argue that such a vocabulary will inevitably coalesce—if
precedents in traditional art movements [23] are any indication. We envision that such
critique could become normalized through modern dissemination practices such as zines [24]
or even exhibitions. Admittedly, an ecosystem of human reviewers of AI models presupposes
a level of AI literacy (and perhaps a tech-optimism) that current creative circles and art
critics lack. On the other hand, we envision that a normalization of AI model reviews would
enhance AI literacy (under specific perspectives and use-cases) within the art world and the
general public.

3.12.4 Conclusion

New methods of human-AI interaction and the emergence of “AI companies” necessitate a
review of current practices within our everyday lives, and how those might change in the
near- or mid-term. The three working groups described above tackled very different issues of
everyday life (education, business, and art) through different positions in the tech-optimism
versus tech-pessimism spectrum. However, all working groups identified the crucial role that
AI literacy (and by association, critical thinking skills regarding AI process, output, and
capacities) will play for everyone moving forward. Moreover, all working groups emphasized
the need for bottom-up movements to empower human stakeholders in a meaningful way
that fosters community, rather than in an adversarial (e.g. students versus educators, or
AI evangelists versus traditional artists) or exploitative fashion. The premise, topics, and
outcomes of the working groups extend beyond game research or game development. However,
games as a medium, gamification as a set of design patterns [25], and play as an activity
[26, 27] could facilitate both AI literacy (e.g. [28]) and community-building (e.g. [29]). While
AI is likely to impact our everyday lives and society in foreseeable and unforeseeable ways,
we hold hope that bottom-up movements and a communal effort will rise up to address the
new challenges.

References
1 S. Colton and G. A. Wiggins, “Computational creativity: the final frontier?” in Proceedings

of the 20th European Conference on Artificial Intelligence, 2012.
2 J. Togelius and G. N. Yannakakis, “Choose your weapon: Survival strategies for depressed

AI academics [point of view],” Proceedings of the IEEE, vol. 112, no. 1, pp. 4–11, 2024.

24261

50 24261 – Computational Creativity for Game Development

3 C. E. Lamb and D. G. Brown, “Should we have seen the coming storm? Transformers, society,
and CC,” in Proceedings of the International Conference on Computational Creativity, 2023.

4 A. Williams, M. Miceli, and T. Gebru, “The exploited labor behind artificial intelligence,”
https://www.noemamag.com/the-exploited-labor-behind-artificial-intelligence, 2022, ac-
cessed 21 August 2024.

5 A. Maslow, “A theory of human motivation,” Psychological Review, vol. 50, no. 4, 1943.
6 E. Zhou and D. Lee, “Generative artificial intelligence, human creativity, and art,” PNAS

Nexus, vol. 3, 2024.
7 M. Karpinska and M. Iyyer, “Large language models effectively leverage document-level

context for literary translation, but critical errors persist,” in Proceedings of the Machine
Translation Conference, 2023.

8 D. Kahneman, Thinking, Fast and Slow. Farrar, Straus and Girou, 2013.
9 T. Scaltsas and C. Alexopoulos, “Creating creativity through emotive thinking,” in Proceed-

ings of the World Congress of Philosophy, 2013.
10 J. R. Hollenbeck, “The role of editing in knowledge development: Consensus shifting and

consensus creation,” in Opening the black box of editorship. Springer, 2008, pp. 16–26.
11 M. Beaney, Imagination and creativity. Open University Milton Keynes, UK, 2005.
12 S. Savvani, “Emotions and challenges during game creation: Evidence from the global game

jam,” in Proceedings of the 14th European conference on games based learning, 2020, pp.
507–514.

13 D. Boud, R. Keogh, and D. Waker, Promoting reaction in learning. A model. Reflec-
tion: Turning experience into learning. London: Routledge in association with The Open
University, 1996, pp. 32–56.

14 M. Bilalić, M. Graf, N. Vaci, and A. H. Danek, “The temporal dynamics of insight problem
solving–restructuring might not always be sudden,” Thinking & Reasoning, vol. 27, no. 1,
pp. 1–37, 2021.

15 T. Fütterer, C. Fischer, A. Alekseeva, X. Chen, T. Tate, M. Warschauer, and P. Gerjets,
“ChatGPT in education: global reactions to AI innovations,” Scientific reports, vol. 13, no. 1,
2023.

16 C. Chaka, “Detecting ai content in responses generated by ChatGPT, YouChat, and
Chatsonic: The case of five AI content detection tools,” Journal of Applied Learning and
Teaching, vol. 6, no. 2, 2023.

17 A. Kultima, “Defining game jam,” in Proceedings of Foundations of Digital Games Confer-
ence, 2015.

18 S. Imai, “Is GitHub copilot a substitute for human pair-programming? An empirical study,”
in Proceedings of the ACM/IEEE 44th International Conference on Software Engineering:
Companion Proceedings, 2022.

19 P. Grant, The Letters of Vincent van Gogh: A Critical Study. Athabasca University Press,
2014.

20 A. Antoniou, I. Lykourentzou, A. Liapis, D. Nikolou, and M. Konstantinopoulou, ““What
Artists Want”: Elicitation of artist requirements to feed the design on a new collaboration
platform for creative work,” 2021. [Online]. Available: https://arxiv.org/abs/2110.02930

21 L. Morowitz and W. Vaughan, Artistic Brotherhoods in the Nineteenth Century. Routledge,
2000.

22 J. McCormack, M. T. L. Rodriguez, S. Krol, and N. Rajcic, “No longer trending on artstation:
Prompt analysis of generative ai art,” in Proceedings of the International Conference on
Evolutionary and Biologically Inspired Music, Sound, Art and Design, 2024.

23 H. Ball, “Dada manifesto,” 1916.
24 S. E. Thomas, “Value and validity of art zines as an art form,” Art Documentation: Journal

of the Art Libraries Society of North America, vol. 28, no. 2, pp. 27–38, 2009.

https://www.noemamag.com/the-exploited-labor-behind-artificial-intelligence
https://arxiv.org/abs/2110.02930

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 51

25 S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design elements to game-
fulness: defining “gamification”,” in Proceedings of the International Academic MindTrek
Conference, 2011.

26 A. Liapis, C. Guckelsberger, J. Zhu, C. Harteveld, S. Kriglstein, A. Denisova, J. Gow, and
M. Preuss, “Designing for playfulness in human-AI authoring tools,” in Proceedings of the
FDG workshop on Human-AI Interaction Through Play, 2023.

27 J. Zhu, G. Chanel, M. Cook, A. Denisova, C. Harteveld, and M. Preuss, “Human-AI
collaboration through play,” in Human-Game AI Interaction (Dagstuhl Seminar 22251),
D. Ashlock, S. Maghsudi, D. P. Liebana, P. Spronck, and M. Eberhardinger, Eds. Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

28 M. Zammit, I. Voulgari, A. Liapis, and G. N. Yannakakis, “The road to AI literacy education:
From pedagogical needs to tangible game design,” in Proceedings of the European Conference
on Games Based Learning, 2021.

29 A. Kultima, K. Alha, and T. Nummenmaa, “Building Finnish game jam community
through positive social facilitation,” in Proceedings of the International Academic Mindtrek
Conference, 2016.

3.13 Distance and Density in Various Spaces
Simon M. Lucas (Queen Mary University of London, GB), Duygu Cakmak (Creative Assembly
- Horsham, GB), Filippo Carnovalini (VU - Brussels, BE), M Charity (New York University,
US), Amy K. Hoover (NJIT - Newark, US), Ahmed Khalifa (University of Malta - Msida, MT),
Setareh Maghsudi (Ruhr-Universität Bochum, DE), and Vanessa Volz (CWI - Amsterdam,
NL)

License Creative Commons BY 3.0 Unported license
© Simon M. Lucas, Duygu Cakmak, Filippo Carnovalini, M Charity, Amy K. Hoover, Ahmed
Khalifa, Setareh Maghsudi, and Vanessa Volz

Distance and density are fundamental concepts that underpin various critical questions, such
as: How novel is a game? Which state should be visited next to explore sparse regions of the
space? How similar are two agents’ behaviours?

Games naturally deal with many types of space: a single video game frame is a point in
image space, a single game state is a point in the game’s state space, an agent is a point in
strategy space, a game is a point in program space (typically expressed as text in a general
purpose high-level language, or in a Game Description Language), and an agent’s behaviour
in a game can be described as a set of trajectories in (state,action) space.

The purpose of the working group was to explore the underlying theory and practical
applications of distance and density in games, and to provide a starting point to game and
game AI researchers wishing to explore the fundamentals in more depth.

3.13.1 Background

Given two points x and y in a space S, denote d(x, y) as the distance between x and y. If
d satisfies a set of axioms10 including the triangle inequality, it is standard to call this a
distance metric. However, there are plenty of measures that do not qualify as a metric, that
can still provide useful results in practice.

10 https://en.wikipedia.org/wiki/Metric_space

24261

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/wiki/Metric_space

52 24261 – Computational Creativity for Game Development

3.13.1.1 Density Estimation Methods

We can use a distance measure to directly compute the density at a given point in the space.
In practice, these methods involve computing the distance to a number of the closest points
sampled from the underlying distribution. Hence, efficient ways to find the closest points
become important. A general and widely used approach is to use KD-Trees to find the k

nearest neighbors. Given these, we can then use a kernel density estimate, or use the average
or maximum distance to the k nearest neighbors (kNN) to estimate density: see Bishop [1]
section 2.5.

An alternative to kNN-based methods is to train a model that does not store all the
patterns. In the interests of simplicity and brevity, we consider two types of trained models:
neural density models, and feature hash-based models.

Neural density models are trained via iterative back propagation, and typically cope well
with the curse of dimensionality, at the cost of an iterative tuning and training process. See
[2] for recent work on this.

3.13.1.2 Distribution Estimation Methods

Feature hash models involve computing multiple hash indices for each pattern, and counting
the occurrences of each index. Hence, the original pattern (e.g. text or image) is transformed
into a multinomial distribution.

These methods include n-grams and n-tuples, which are similar concepts used in slightly
different contexts: n-grams are commonly used as text probability estimators, usually
composed of consecutive symbols (bigrams, trigrams etc), whereas n-tuples have a more
general interpretation, e.g. randomly sampling an entire image space.

Related to n-tuple methods are the Context-Tree-Switching (CTS) and Skip-CTS al-
gorithms used by Ostrovski et al [3] their work on unifying count-based exploration and
intrinsic motivation. Results included improved performance on Montezuma’s revenge (a
hard exploration game).

While n-gram models can be used to estimate the probability of a pattern given the
model (and by Bayes’ theorem, the probability of the model given the pattern), they should
be used with care as pattern generators. Maximum likelihood sequences are often highly
repetitive; Lucas and Volz [4] overcame this by evolving Mario levels to match the tile-pattern
distribution (measured by KL-Divergence) instead of the most likely ones given the model.

3.13.1.3 Invariance and Equivariance

Key concepts related to the notion of distance are invariance and equivariance. In many
applications, we wish to consider similarity between entities independently of certain trans-
formations T .

Invariance: A function f is said to be invariant under transformation T if:

f(x) = f(T (x))

Example: Consider a convolutional image recognition system that identifies that an image
contains Mario, regardless of his location.

In a distance setting, this translates to:

d(x, y) = d(x, T (y))

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 53

Here, the distance remains unchanged even when one of the points is transformed by T .
Equivariance: A function f is said to be equivariant under transformation T if:

T (f(x)) = f(T (x))

Continuing with the Mario example, an equivariant system identifies Mario and his
location. Moving Mario in the image by the transform T also modifies the location output
accordingly.

In a distance setting, equivariance means that if we apply a transformation T to both
points x and y, the resulting distance should reflect the transformation applied. Formally,
for a distance function d and transformation T , this can be expressed as:

d(T (x), T (y)) = function of T and d(x, y)

For instance, if T is a scaling transformation by a factor c, then an equivariant distance
measure should satisfy:

d(T (x), T (y)) = c · d(x, y)

This reflects the change in distance due to the scaling transformation T .
Applying the appropriate transformations as part of the distance (or density) measurement

process is important in many applications to ensure the measurements align with the goals
of the application, and are not contaminated with irrelevant variations.

3.13.2 Application: Improved Exploration Policies

RL algorithms typically use random exploration to bootstrap policy learning. In problems
with flat reward landscapes, this can be very inefficient. Here we demonstrate an example of
improving exploration using notions of distance and density.

Figure18 shows an agent exploring a grid world given a budget of 1,000 steps. The agent’s
state is defined by its position on the grid, and it is allowed to take its next action (NESW)
from any previously visited state. The aim is to visit as many cells as possible within a
specified number of steps, in this case 1,000.

Note the effects of three different rollout policies: random, count-based and kNN sparsity
based. In each case, having selected a state, we always take a random action from that
state. All that differs is the state selection mechanism. In the pure random rollout, we
choose the current state. In count-based exploration, we keep a count of the number of
times each state has been visited, and select one at random with the least number of
visits. In kNN sparsity search we select the state with the lowest kNN density. This is
the most sophisticated exploration policy among the three, and has the best performance,
demonstrating the importance of a density model that aligns with the goal of the algorithm.

3.13.3 Application: Similarity Estimation in Tile-Based Games

While there are many ways to measure the similarity of content in tile-based games, many
practical applications require measures that align with human perception. Berns et al. [5]
thoroughly studied various measures and compared their results with a user-study asking
participants about how they perceive similarity in different settings 19.

24261

54 24261 – Computational Creativity for Game Development

Figure 18 Exploration in a grid world: the aim is to visit as many cells as possible given a 1, 000
step budget. Left: random rollout (322 cells): middle: count-based exploration (489 cells); right:
kNN sparsity search (761 cells).

lo
z-
im

g
lo
z-
pa
t

cc
s-
im

g
cc
s-
pa
t

Ⓑ Five example stimuli from each experimental condition

Consider the paerns contained in the images.
Which of the two images below is most similar
to the one above?

Ⓐ Triplet comparison task: two alternative forced choice

Figure 19 (A) Two alternative forced choice (2AFC) triplet comparison task and (B) five example
stimuli for each experimental condition: two video game titles (ccs: Candy Crush Saga; loz: Legend
of Zelda) in two representations (img: level screenshots; pat: abstract colour patterns). Each
stimulus was randomly drawn from the respective subset identified through our three-stage selection
procedure

They found that overall, pre-trained general-purpose computer-vision-based models such
as DreamSim [8] and CLIP [7] performed better in terms of agreement with human perception
than more custom measures developed in the context of PCG. However, they are also more
expensive to compute, and this study focused on visual perception only. More work is
required in that area to understand the effects of choosing different distance (similarity)
measures and how they correspond to human perception, in order to draw more general
conclusions.

3.13.4 System Design and Evaluation

In designing any system that uses distance measures and / or density estimation, there are
multiple important factors, including:

Dimensionality and the nature of the native pattern space e.g. vector, sequence, image,
data object: affects choice of invariant transformations, distance measures and models.
Data quantities involved (including volume, velocity, and variability: affects choice of
trained versus stored-pattern algorithm.
Subjective (perceptual) or objective application alignment - see Li et al. [6] for a survey
of both types applied to a wide range of games.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 55

Multimodality of data (e.g. some models may assume a unimodal distribution that does
not fit the data well)
Scaling of distance and density algorithms for commonly used functions, with respect to
size of pattern and number of patterns.

3.13.4.1 Evaluation

In general, we find that evaluation of distance and density measures tends to be done ad hoc
for each application: we are not aware of benchmarks or evaluation frameworks that can
test the performance of these important methods across a range of applications. This seems
worth further exploration, given that choice of distance and density measures have on the
success of an application — as clearly demonstrated in the two applications we considered.

3.13.4.2 Libraries

Density estimation: https://scikit-learn.org/stable/modules/density.html
KD-Trees in Python: https://docs.scipy.org/doc/scipy/reference/generated/scipy.
spatial.KDTree.html
Efficient kNN computation - use in density estimation: See the above KD-Trees
link
Image-similarity-measures: https://pypi.org/project/image-similarity-measures/
Audio Similarity: https://librosa.org/doc/latest/index.html
Tree Edit Distance: https://pythonhosted.org/zss/ - useful for computing the distance
between two Python programs. To do this, compute the Abstract Syntax Tree for each
program using standard functions. Before measuring the tree edit distance, aspects
considered irrelevant, such as variable names, may be discarded. See [10] for comparing
student program code.

3.13.5 Summary

Distance and density estimation in vector spaces is a well studied topic, with still-useful
algorithms such as kNN and kernel density estimation that date back to the 1960s or earlier.

However, we find that there is much to do to apply the most appropriate methods for
game-related problems, as illustrated by the example applications discussed above.

There are compromises to be made along the lines of problem alignment, training speed
versus inference speed, and dealing with non-vector spaces such as behaviour traces and
program code. In many cases, the methods exist for dealing with these as well, but require
effort to find and utilise - we recommend more work along these lines. For example, computing
distance and density among programs, or among game state objects: we are not aware of
any user-ready libraries for these important tasks.

References
1 Bishop, C. M., Pattern Recognition and Machine Learning. Springer, 2006. Retrieved

from https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-
Recognition-and-Machine-Learning-2006.pdf

2 Qiao Liu, Jiaze Xu, Rui Jiang, and Wing Hung Wong, Density estimation using deep genera-
tive neural networks.Proceedings of the National Academy of Sciences, 118(15):e2101344118,
2021. https://doi.org/10.1073/pnas.2101344118.

3 Ostrovski, G., Bellemare, M. G., van den Oord, A., & Munos, R., Unifying Count-Based
Exploration and Intrinsic Motivation. arXiv preprint arXiv:1606.01868, 2017. Retrieved
from https://arxiv.org/abs/1606.01868

24261

https://scikit-learn.org/stable/modules/density.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html
https://pypi.org/project/image-similarity-measures/
https://librosa.org/doc/latest/index.html
https://pythonhosted.org/zss/
https://doi.org/10.1073/pnas.2101344118

56 24261 – Computational Creativity for Game Development

4 Lucas, S. M., & Volz, V., Tile Pattern KL-Divergence for Analysing and Evolving Game
Levels. In Proceedings of the Genetic and Evolutionary Computation Conference, pp.
170-178, 2019. Retrieved from https://dl.acm.org/doi/10.1145/3321707.3321844

5 Sebastian Berns, Vanessa Volz, Laurissa Tokarchuk, Sam Snodgrass, and Christian Guckels-
berger, Not all the same: Understanding and informing similarity estimation in tile-based
video games. In CHI ’24: Proceedings of the CHI Conference on Human Factors in Computing
Systems, Article No. 366, pages 1–23, May 2024. https://doi.org/10.1145/3613904.3642077.

6 Yuchen Li, Ziqi Wang, Qingquan Zhang, and Jialin Liu, Measuring diversity of game
scenarios, 2024. https://arxiv.org/abs/2404.15192.

7 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and
Ilya Sutskever, Learning Transferable Visual Models From Natural Language Supervision.
In Proceedings of the 38th International Conference on Machine Learning. PMLR, 2021

8 Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel,
and Phillip Isola, DreamSim: Learning New Dimensions of Human Visual Similarity using
Synthetic Data. In Advances in Neural Information Processing Systems, Vol. 36, 2023.

9 Zhang, K., & Shasha., Simple fast algorithms for the editing distance between trees and
related problems. SIAM Journal on Computing, 18(6), 1245-1262, 1989.

10 Chou, E., Fossati, D., & Hershkovitz, A., A Code Distance Approach to Measure Originality
in Computer Programming. In Proceedings of the 16th International Conference on Computer
Supported Education (CSEDU 2024) - Volume 2 (pp. 541-548). DOI: 10, 2024.

3.14 Sub-optimal Bots
David Melhart (University of Malta - Msida, MT), James Goodman (Queen Mary University
of London, GB), Christian Guckelsberger (Aalto University, FI), Greta Hoffmann (TH Köln,
DE), and Diego Perez Liebana (Queen Mary University of London, GB)

License Creative Commons BY 3.0 Unported license
© David Melhart, James Goodman, Christian Guckelsberger, Greta Hoffmann, and Diego Perez
Liebana

We traditionally aim to create game-playing agents that are optimised for a certain task —
be it performance, human-like behaviour, or facilitating a positive player experience. In this
working group, we asked the question — “Do bots always have to be efficient?” We argue
that there is merit to low-fi, sub-optimal bots in areas such as games testing, producing
erratic and distracted behaviour to model users, and resource management for sustainability.

3.14.1 The Scope of Being Sub-optimal

When talking about sub-optimal bots, we focus on agents that are designed to be “bad at their
job” — that is they cannot perform as well as the state-of-the-art due to some constraints.
While constraints here generally mean resource constraints in terms of limited computing
power or memory or time, sub-optimal bots could also under-perform current systems by
presenting deliberately non-human-like. The former we could call natural constraints, and
the latter we could call artificial constraints.

Natural Constraints: The natural constraints of a computational system constitute
its computational resources. Sub-optimal performance could arise from simple limits on
resource use. While some of these limits are a given, others can exist by design. In the

https://doi.org/10.1145/3613904.3642077
https://arxiv.org/abs/2404.15192
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 57

current boom of large models, we often view resource constraints as a limit we should
aim to lift, and with a good reason. Since 2017 we have seen the exponential rise of
Large Language Models (LLMs) [1] fuelled both by innovation [12] and by ever-growing
architecture size, training data volume, and computational resources [6].
Artificial Constraints: In light of the aforementioned positive aspects of scaling, why
would we want to limit computational resources by design? We identify two main reasons:

A case for Sustainability: One of these main reasons is sustainability. Water usage of
the vendors of foundation models is on the rise [3], and despite improvements in energy
efficiency, the growing penetration of AI in different domains paints an uncertain picture
of our future energy needs [2]. While we need powerful models to drive innovation and
tackle complex problems, we need to think about the potential environmental cost of
our applications as well. Up until now, the “state of the art” meant “best performance”

— however, we propose a new challenge for future applications and innovations in the
space that focus on “good enough performance” and “best resource savings”. Future
research in this area could be facilitated via a new competition for Sustainable Agents.
By Design: Artificial limitations can be designed to produce real or perceived
sub-optimal performance — not necessarily by limiting actual resources. Our two
grand examples here are distracted bots and non-human-like agents. In the case of
distracted bots, we envision systems mirroring human cognitive load [5] or short-
term memory [9] to create more anthropomorphic behaviour by modelling the human
attention span. We hypothesise that bots limited in this way would produce unexpected
but more human-like behaviour. In the case of non-human-like agents, the goal of
imposed limitations is the opposite of achieving believability. These bots would be
designed to emphasise their artificial nature and the limited capacity of their underlying
systems. A positive outcome of these agents would be algorithmic transparency [13] and
emotional separation between humans and machines, which could cause unexpected
negative outcomes (e.g. trauma dumping or developing unhealthy attachments to AI
companions).

3.14.2 Applications for Sub-optimal Bots

In practical terms, there are a number of ways we can limit our bots to enforce a sub-optimal
performance.

Memory: Many agents have an implicit perfect memory, which is not reflective of
(most) human players. Restricting the memory window, or the types of historic events
remembered would give sub-optimal, and arguably much more human-like behaviour.
Forward Planning Horizon and Discount Rate: A shorter planning horizon, and/or
a discount rate profile that emphasises short-term gains would force sub-optimal myopic
agents to sacrifice long-term success for immediate gratification.
Flexibility of Play Style and Strategies: Restricting the available action space for
an agent could force it to explore different strategies. For example, if a Chess agent were
forbidden from moving its Queen until after it had castled.
Accuracy of World Model: Providing planning agents with deliberately imperfect
models of the world. For example in a first-person shooter game, an agent might
overestimate how far it can jump; or have an incorrect mental map of unseen terrain.
Perception of World State: A restrictive field of view, only taking input observations
from a subset of the full data available.
Accuracy of Action Implementation: Just because a specific action is intended does
not mean it is implemented in the game environment accurately. This is used for example

24261

58 24261 – Computational Creativity for Game Development

in first-person shooters to ensure that NPC bots often miss[11], but can be extended
more widely to mirror human mis-clicks on interfaces.
Theory of Mind: Modelling Theory of Mind explicitly in terms of, ‘I know that she
knows that I know...’ may give interestingly sub-optimal behaviour. This may also be
a good reflection of non-expert humans who frequently only manage one to two nested
levels of theory of mind [9].

We have identified a number of domains within game research, serious games, and games
entertainment where these aforementioned limitations — as described above — could find a
positive use.

Games Testing: In Games Testing it is often desirable to have agents exploring the
game in a non-optimal fashion. This is because we aim to increase the test coverage
by expanding into non-optimal play or simulating human behaviour by mirroring the
limitations of human cognition.
Games Playing: Similarly to Games Testing, Non-Player Characters can also benefit
from the aforementioned limitations by enhancing their human-like aspects and/or creating
sub-optimal opponents. This could help provide a variety of interestingly sub-optimal
opponents. These opponents could be used as scripted adversaries, tutorials to multiplayer
games or as part of a dynamic difficulty adjustment system.
User Modelling: Beyond testing, user research can make use of models which simulate
human limitations to understand and improve Human-Computer Systems.
Resource Optimisation: Finally, resource limits could be used simply to cut down on
practical resource usage. The implication here is that bots and agents trained on such
limitations would be “optimised” to handle constraints.

3.14.3 Future Research

We have identified several possible research questions for future studies into applying low-
fidelity bots to simulate human-like behaviour.

How do we perceive bots being bad at their jobs? Previous research showed that
bots are designed to exhibit certain cognitive processes often perceived as confusing [8].
Future research should focus on uncovering reliable markers of bad performance due to
cognitive limitations.
How could bots resist humans? Similarly, resistance from interactive agents could be
interpreted as a sign of an unresponsive system, rather than intentional feedback. Current
human-like systems are often ill-equipped to communicate their own limitations — the
most famous example being ChatGPT’s tendency to “yes and” requests even if a request
is beyond its limitations. Future work into HCI should aim to understand the key to
clear communication and reduce user frustration in cases where the bots are limited in
some capacity.
Do constraints make bots more (or less) human-like? At the beginning of
the report, when describing cases for imposing Artificial Constraints by design, we
hypothesised two possible directions for limited agents. One was enhancing the human-
like nature of the bot, while the other was specifically stripping the agent of believability.
Future research in this area should focus on the spectrum of non-human to human-like to
super-human bots in terms of perceived performance and believability.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 59

A case for Computational Rationality: Beyond the domain of games, we believe
that the research of sub-optimal bots could shed light on emergent qualities of human
cognition and behaviour. Based on the Theory of Computational Rationality [7, 4, 10]
human cognition can be conceptualised as an “optimal” — that is rational — system
under computational constraints. Given this premise, future research could aim to go
beyond the scope of game-playing agents when modelling human cognition and ultimately
behaviour via limited bots.

3.14.4 Conclusions

In this report, we detailed some of the outcomes of our work group on sub-optimal bots. We
aimed to map out the scope of limitations, applications, and future research, arguing for
the benefits of researching and developing underperforming computer agents. We believe
in areas such as games testing, user modelling, and resource management for sustainability
these bots can contribute to positive outcomes.

References
1 Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., Chen, H., Yi, X., Wang,

C., Wang, Y. and Ye, W., A survey on evaluation of large language models. In ACM
Transactions on Intelligent Systems and Technology, 15(3), pp.1-45, 2024.

2 Desislavov, R., Martínez-Plumed, F. and Hernández-Orallo, J., Trends in AI inference
energy consumption: Beyond the performance-vs-parameter laws of deep learning. In
Sustainable Computing: Informatics and Systems, 38, p.100857, 2023.

3 George, A.S., George, A.H. and Martin, A.G., The environmental impact of AI: a case
study of water consumption by chat GPT. In Partners Universal International Innovation
Journal, 1(2), pp.97-104, 2023.

4 Gershman, S.J., Horvitz, E.J. and Tenenbaum, J.B., Computational Rationality: A Con-
verging Paradigm for Intelligence in Brains, Minds, and Machines. In Science, 349(6245),
pp. 273-278, 2015.

5 Hedden, T. and Zhang J., What Do You Think I Think You Think?: Strategic Reasoning
in Matrix Games. In Cognition 85(1), pp. 1–36, 2002.

6 Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B., Chess, B., Child, R., Gray, S.,
Radford, A., Wu, J. and Amodei, D., Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

7 Lewis, R.L., Howes, A. and Singh, S., Computational Rationality: Linking Mechanism and
Behavior Through Bounded Utility Maximization. In Topics in Cognitive Science, 6(2), pp.
279-311, 2014.

8 Melhart, D., Yannakakis, G.N. and Liapis, A., I Feel I Feel You: A Theory of Mind
Experiment in Games. In KI-Künstliche Intelligenz, 34(1), pp.45-55, 2020.

9 Miller, E. K., and Buschman, T. J., Working Memory Capacity: Limits on the Bandwidth
of Cognition. Daedalus 144(1), pp. 112–122, 2015.

10 Oulasvirta, A., Jokinen, J.P. and Howes, A., Computational Rationality as a Theory of
Interaction. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems. pp. 1-14, 2022.

11 Schrum, J., Karpov, I. V., and Miikkulainen, R. Human-like Combat Behaviour via Multi-
objective Neuroevolution. In Believable Bots, 119–50. Springer, 2013.

12 Stiennon, N., Ouyang, L., Wu, J., Ziegler, D., Lowe, R., Voss, C., Radford, A., Amodei, D.
and Christiano, P.F., Learning to summarize with human feedback. In Advances in Neural
Information Processing Systems, 33, pp.3008-3021, 2020.

13 Watson, H.J. and Nations, C., Addressing the growing need for algorithmic transparency.
In Communications of the Association for Information Systems, 45(1), p.26, 2019.

24261

60 24261 – Computational Creativity for Game Development

3.15 Arts & Crafts & Generative AI
Mirjam Palosaari Eladhari (Stockholm University, SE), Gabriella A. B. Barros (modl.ai -
Maceio, BR), Alena Denisova (University of York, GB), Amy K. Hoover (NJIT - Newark,
US), Chengpeng Hu (Southern Univ. of Science and Technology - Shenzen, CN), Leonie
Kallabis (TH Köln, DE), Ahmed Khalifa (University of Malta - Msida, MT), Matthias
Müller-Brockhausen (Leiden University, NL), Gillian Smith (Worcester Polytechnic Institute,
US), and Anne Sullivan (Georgia Institute of Technology - Atlanta, US)

License Creative Commons BY 3.0 Unported license
© Mirjam Palosaari Eladhari, Gabriella A. B. Barros, Alena Denisova, Amy K. Hoover, Chengpeng
Hu, Leonie Kallabis, Ahmed Khalifa, Matthias Müller-Brockhausen, Gillian Smith, and Anne
Sullivan

Generative Artificial Intelligence (GenAI) holds much potential for artistic practice in game
design, craft, and fine arts. At the time of writing, 2024, the advancements of GenAI are
rapid in regards to Large Language Models (LLMs) and Text to Image (TtI) systems. Artists
and game designers are keen to explore new the tools, systems, and their updates as they
are released, and the pace is quick. The members of the work group have multiple roles as
scientists, game designers, and art- and craft practitioners, and converged around exploring
GenAI for arts, crafts, and game development.

In this report we describe our visions of usage of GenAI for creation of game assets, free
form doodles, and art generated using exclusively individual artists’ original art in "small"
data sets.

3.15.1 Identification of Open Questions for Exploration

The group started with discussing themes to explore, and then identified topics for subgroups
for further investigation. The themes related to ways to use GenAI when both artists and
scientists use generative AI in collaboration with the GenAI systems. They were as follow:

AI as an art material: akin to a painting brush or a specific software tool.
Small Datasets: The affordances the use of small datasets may offer individual artists
and teams of creators for expressing their individual artistic voices and for ascertaining
that any art work used for generation originates from the artists themselves, rather than
originating from an large database of data scraped from the web.
The human wanting to do the fun stuff: The tension between what tasks an artist may
want to do themselves, as a part of their creative practice, and between tasks a generative
AI system may be capable of.
Mixed initiative creation: The use of technologies of content generation as part of an
artistic process.
Software methods and tools using generative AI for supporting creativity.
Simultaneous generation of game levels and assets.
Stylistic coherence of generated output.
Skill enhancement in visual representation such as drawing, allowing people who are not
trained in visual expression to create artifacts that presents ideas in a more specific and
sophisticated manner.
Usage of generative AI in own artistic practice.
Creativity support tools for art.

3.15.2 Three sub groups

We selected three themes for further inquiry in sub groups:

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 61

Small datasets for designers and artists. (Subgroup 1)
Creative and artistic use of small datasets restricted to artists’ and designers’ own
artifacts.
Usage of tools in practice of design and art.
Surveys of available tools, their affordances and practical guides.

Game asset generation (Subgroup 2)
stylistic consistency
design principles
resonance between level design and assets for specific level.

Doodling: Design affordances of Large Language Models (LLMs) in relation to Text to
Image (TtL) systems. (Subgroup 3)

Use of LLMs and TtLs as art materials.
What is the equivalence of doodling using LLMs and TtLS?

In the following we summarise the outcomes of subgroups 1 and 2, referring to the respective
reports, which is followed by the report of subgroup 3.

3.15.3 Small datasets for designers and artists – Subgroup 1

The subgroup focused on how artists and designers can use their own artwork to train GenAI
models. When utilizing large language models (LLMs) trained on extensive databases, often
sourced from the internet, issues concerning artists’ contributions arise, particularly around
individual style and intellectual property. The use of "small" datasets, as discussed by [8],
offers promising opportunities for artists, game designers, and teams working within specific
collaborations or development studios. If a generative model is trained solely on an artist’s
own creations, it can produce outputs that are unique to that artist while still harnessing
the capabilities of GenAI technologies.

Our group explored the concept of GenAI as a tool within an artist’s studiocomparable
to a new brush or other medium for creative expression. We conducted a survey with three
primary focuses: the historical use of generative arts by visual artists and authors, dating
back to the 1920s; the technologies employed in tools that allow artists to train models on
their own work; and the currently available tools for such purposes.

In our investigation, we found that while many tools and high-level surveys exist, there is
a lack of practical guidance to help artists make informed decisions about which tools to use
and how to contextualize them. From the range of available tools, we conducted experiments.
For example, we trained a model exclusively on paintings from one of the group’s artists.

Throughout this experimentation, we identified the significant potential of using limited
datasets for training. However, the process remains labor-intensive. We recommend further
work in this area, including the development of guides and standards for artists, designers,
and developers. These resources should offer guidance on how to use current and future
technologies, the types of creative support they provide, their affordances regarding the
nature of generated works, and their accessibility in terms of skill requirements, cost, and
whether they are open source. The subgroup’s work is described in more detail in 3.16.

3.15.4 Generation of Game Assets – Subgroup 2

The group exploring the generation of game assets concentrated on creating graphical assets,
commonly referred to as sprites. Their work was guided by two key questions: a) How can
the generation of game assets take into account the properties of different game types? and
b) How can we generate multiple game assets that maintain a consistent art style?

24261

62 24261 – Computational Creativity for Game Development

To address these questions, the group followed the guidelines set out by Liu et al. [1],
which emphasize focusing on subject and style keywords that can be adapted to specific
styles and levels of abstraction. They categorized the assets into different groups, such as
characters, interactive objects, environments, and more, in order to generate cohesive sprite
sets.

The group experimented with various diffusion models to assess their effectiveness in
mimicking distinct art styles, as detailed in section 3.11. Their findings indicated that while
stable diffusion models can produce reasonably comparable images, achieving a high level
of stylistic consistency that is convincing to viewers remains a significant challenge. The
subgroup’s work is described in more detail in 3.11.

3.15.5 Doodling with Large Language Models and Text to Image Systems –
Subgroup 3

In this subgroup, run by Gillian Smith, Anne Sullivan, and Alena Denisova, we discussed
and experimented with the playful act of “doodling” with off-the-shelf generative systems.
Since doodling is something that artists, crafters, and designers can commonly do with any
kind of design material, we posit: if we want to understand Generative AI as a design
material, we need to learn how to doodle with it.

3.15.6 Intro

We began our exploration with a discussion of what doodling is and its role in the creative
process, drawing from our own experiences. We identified seven characteristics of doodling:

Improvisational: doodling is a form of improvisational play, where the artist is building
upon their own prior work over time, exploring and reforming their creative process as
they go.
Not goal-oriented: doodling is an exploratory activity. Artists doodle without intent for
these doodles to be shared or incorporated into larger planned works.
Playful: doodling permits playful exploration of materials, experimenting with whimsical
or unexpected forms, and may be done primarily for fun or leisure.
Low cost: artists doodle with existing, low cost, materials that are not reserved for
another project or too precious to ‘waste’.
No notion of failure: doodling is heavily process-oriented, with no real notion of ‘failure’
with respect to either internal or external validation or judgment. It transcends skill and
judgment; it is accessible to everyone, and there is no way to do it either wrong or right.
Autotelic: doodling serves its own purpose for an artist; it is not done in the service of
any larger intended goal, even if it does emergently lead to new skills or techniques.
Easy to pick up and put down: doodling is often done idly, by the subconscious mind. It
is done to help focus the mind, to visualise ideas and help yourself think, or to pass time.
As such, doodling is engage intermittently – easy to start, stop, and start again.

We further identified common roles that doodling plays for an artist’s creative process.
When doodling, an artist can:

Learn and explore the material affordances of the medium.
Discover and build skills with the medium.
Reflect on their own creative process.
Reflect on their own identity and goals as an artist.
Focus their mind through engagement in a continued repetitive task.
Explore a new and unfamiliar design space.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 63

Building from these discussions of what it means to doodle in general, we focused the
remainder of our subgroup on exploring what it means to doodle with generative AI systems.
We chose ChatGPT 4.0 as a system that was ‘easy to pick up and put down’, and aimed to
focus on the generative model as opposed to the outputs of the system. That is: the goal is
not to generate doodles, but to doodle with a prompt-based interaction mechanism for a
generative model.

3.15.7 Summary of Experiments

To begin our experimentation, we gave ourselves one rule: Just sit down, open ChatGPT,
and play.

Throughout the experience, we would share our output and our prompts, borrowing ideas
and inspiration from each other to modify and work from, almost akin to musical riffing and
improvisational theater.

Some of the prompt experiments that we ended up using are as follows:
Making up fictional art styles and applying to existing images
Making up single-word responses for long complex inputs
Drawing pictures of those single-word responses
Re-imagining names as mythical creatures
Make ASCII art from emoji
Respond to sentences with emoji chains

Through the playful experimentation, we had a few insights into what worked and didn’t
work when doodling with ChatGPT 4.

The relative ease of getting output that was "good enough" fit well with a doodling
mindset and the unexpected results made the overall experience quite fun. However, the
high fidelity of the output worked against it - it was easy to get caught up in the details.
Additionally, the higher fidelity took more time to render, which also moves it away from
feeling like a doodle, as doodles are often about fast results.

What does this mean for LLMs as media? The question opens up a fascinating exploration
of the ways in which large language models (LLMs) like ChatGPT are more than just tools
for replicating existing art forms. They are not simply systems that mimic or reproduce the
traditional structures of media, whether in writing, visual arts, or conversation. The process
and input into these models are unique in their nature and do not conform to the established
categories of creation.

In this sense, the output generated by these models is not bound by the conventions of
fidelity we might apply to other forms of media. For instance, what we might traditionally
consider ‘high fidelity’ images—detailed, precise, and closely mirroring reality – are now seen
through a different lens. The outputs, which may sometimes resemble something more akin
to doodles or abstract sketches, take on a new meaning and value within this framework.
The results need not be perfect replicas to hold artistic merit or expressive power.

What is exciting about this is the fun involved in the process of creating with LLMs. There
is an inherent playfulness and experimentation that invites users to explore the expressive
range of the underlying models. The user is not just interacting with a tool but is engaged in
the development of a personal understanding of the model’s potential and limitations. This
engagement fosters an evolving relationship with the medium itself, and this kind of active
discovery is promising for the future of AI-assisted creativity.

Moreover, through this process, users begin to develop their own artistic vocabulary
specifically tailored to using these models. Just as traditional artists use a distinct set

24261

64 24261 – Computational Creativity for Game Development

Figure 20 Here’s the illustration featuring a glimberflopped in a nerdletower located in lichtwald
forest filled with geekfrolics in the style of bleakoscribble.

of skills and tools to create within their chosen medium—whether painting, photography,
or sculpture—working with LLMs requires the development of a new set of skills and a
personalised approach. This vocabulary allows users to unlock deeper forms of expression
and pushes the boundaries of what LLMs can achieve in artistic creation. It shows promise
for AI and human creativity becoming more intertwined, each informing and expanding the
potential of the other.

3.15.8 Takeaways

Doodling is an important part of a creative practice. Therefore, for LLMs and AI-based tools
to excel as creative media, they need to be designed to support doodling-style interactions.
Based on our experimentation during this workshop, we identified a few ways in which
LLM-based tools could enable doodling like behavior.

The primary change is that LLM-based creative tools should support casual, low cost,
idle engagement. ChatGPT 4, used for our experiments, has some capability for this, but we
struggled with the high fidelity output which took quite a bit of time to generate. If instead,
it was possible to enter into a sketch or doodle mode where low-fidelity images could be more
quickly generated for refinement later, this would allow for a more doodle-like experience.

Beyond this, the chat-based and browser-like interface creates a distance between the
interactor and the output, which we struggled with. For example, if there was one part of an

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 65

Figure 21 Here’s the digital painting of featuring a glimberflopped in a nerdletower located in
lichtwald forest filled with geekfrolics in the style of joyspright.

image that we wanted to change, we were unable to convey this information through the
interface we had access to. Additionally, having a series of images to chose from is a form of
curation rather than of creation. Addressing this gap is vital for making LLM-based tools
align with creative practice.

Our doodling-inspired experiments led us to realize that we need new vocabularies for AI
Art. Currently, the vocabulary is focused on tool support and replacement for traditional
art. However, this language does not support an authentic engagement within the medium,
which is required for AI Art to be perceived and used as an art practice.

Finally, for AI Art and LLM-based tools to excel as a creative medium, there must be
continued work considering and addressing the ethics of the data and use of these tools.
Until this is addressed, these tools will never be recognized as a creative medium by art
communities, due to the questionable practices by these companies.

References
1 Vivian Liu and Lydia B Chilton. Design guidelines for prompt engineering text-to-image

generative models. In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems, CHI 22, New York, NY, USA, 2022. Association for Computing
Machinery.

2 Gabriel Vigliensoni, Phoenix Perry, Rebecca Fiebrink, and others. A Small-Data Mindset
for Generative AI Creative Work. Generative AI and HCI - CHI 2022 Workshop, 2022.

24261

66 24261 – Computational Creativity for Game Development

3.16 Small Data Sets for Designers and Artists
Mirjam Palosaari Eladhari (Stockholm University, SE), Gabriella A. B. Barros (modl.ai
- Maceio, BR), Amy K. Hoover (NJIT - Newark, US), and Ahmed Khalifa (University of
Malta - Msida, MT)

License Creative Commons BY 3.0 Unported license
© Mirjam Palosaari Eladhari, Gabriella A. B. Barros, Amy K. Hoover, and Ahmed Khalifa

Generative AI has emerged as a transformative tool in the fields of art and design, offering
new ways to create and explore visual, auditory, and interactive works. The use of generative
AI often relies on large datasets and advanced technical knowledge, which can pose challenges
for artists and designers in therms of access and resources. Another issue is that large
language models are trained on data from external datasets, which is an issue for artists
when it comes to the expression of their artistic authorial voice as well as concern in regards
to intellectual property.

However, there is growing interest in the use of small data sets and more accessible tools
to empower artists and designers, enabling them to maintain their artistic voice, address
intellectual property concerns, and make generative AI techniques more inclusive and widely
available.

This report explores the insights gained from a subgroup in our workshop on Generative
AI for art and craft, centering on "Small Data Sets for Designers and Artists," focusing on
the application of generative AI in creative practices. The workshop raised key questions,
such as: What generative AI techniques are currently being used by artists and designers?
What tools exist to support the creation of AI-generated art, and how accessible are they?
Additionally, the discussion explored how small amounts of data can be used to train or
fine-tune generative models, and what level of knowledge is required to effectively use these
tools. A critical focus was on how generative AI can be integrated into the creative workflows
of artists, designers, and programmers, and how these tools and techniques can be considered
as artistic materials in their own right.

3.16.1 Background

To contextualize our discussion, we examined the use of generative techniques in creative work
throughout recent history. This exploration included the surrealist practices of the 1920s [3]
as well as experiments with physical materials such as Max Ernst’s grattage technique from
the 1930s. We also considered the concept of "potential literature" pioneered by the Oulipo
group (Ouvroir de littérature potentielle) in the 1960s [2]. The use of computation in the
visual arts can be traced back to the 1960s, when artists like Georg Nees and Vera Molnar
experimented with flatbed drawing machines and plotters. In recent years, generative AI has
been prominently featured in the works of artists such as Anna Ridler, Mario Klingemann,
Nettrice Gaskins, Refik Anadol, and Helena Sarin. Notably, Ridler [6] and Sarin’s [7] practices
involve training models using imagery they have personally created, blending their artistic
vision with customized adaptations of computational methods to produce unique works that
reflect their individual styles.

Vigliensoni et al. [8] argue that working with small-scale datasets is a powerful way to
enable greater human influence over generative AI systems in creative contexts. They suggest
that while large datasets may lead to overfitting and may not align with specific creative
goals, models built with smaller, more focused datasets can better support meaningful and
personalized creative work.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 67

3.16.2 Positioning and Resources

In our subgroup, we aimed to explore how artists and designers could leverage their own
art in conjunction with generative AI techniques. During the workshop, we focused on
utilizing existing artworks created by participants and experimenting with the available tools
in July 2024. We identified a variety of resources to support our exploration, including APIs,
tutorials, and custom-built tools.11

Several surveys, such as that by Franceschelli [4], have explored how generative AI can be
applied in creative practices. Additionally, symposia like Creative Machine, held at Oxford
since 201412, bring together artists and researchers to showcase their work at the intersection
of creativity and AI. The report AI and the Arts: How Machine Learning is Changing
Creative Work [5] presents a comprehensive overview of the creative communities interested
in using machine learning in the arts, as shown in Figure 22. Within our group, we identified
our position at the intersection of the "Technical Community" and "The Art World," reflecting
our engagement with both the technical and artistic dimensions of generative AI.

3.16.3 Experiment

As we explored the available tools for using personal visual art as small datasets to train
generative AI models, we conducted quick tests with free or demo versions. Our guiding
question for these tests was: "As an artist, how can I experiment with using my own creations,
such as drawings or paintings, to train a model and explore its potential in my artistic
practice?"

We quickly realized that navigating the tools, understanding their computational founda-
tions, and assessing their affordances was far from straightforward. For a designer or artist, a
significant amount of time would be required to explore the possibilities, often through trial
and error. The complexity of the tools and their steep learning curve presented a barrier to
immediate creative experimentation.

11

Available resources we examined are listed blow. It is not a comprehensive list of all available tools, only
the ones we examined in the workshop.

ML5js https://ml5js.org/
OpenArt https://openart.ai/
Craiyon https://www.craiyon.com/
Runway https://runwayml.com/
Leonardo https://leonardo.ai/
Vizcom (for product design) https://www.vizcom.ai/
Canva https://www.canva.com/ai-image-generator/
DreamBooth https://dreamlook.ai/dreambooth
Tutorial for custom datasets at Hugging Face https://huggingface.co (available with search term:
transformers v3.2.0)
Figment https://figmentapp.com/
Training Loras (available as a google colab)
Generative Deep Learning (available at github)
Suite of tools for course on Artificial Intelligence and Storytelling given at The University of Edinburgh,
https://kage.dev/ai-storytelling-backstage/

12 https://www.creativemachine.io

24261

68 24261 – Computational Creativity for Game Development

Figure 22 Creative communities working with machine learning.

Furthermore, we found that existing surveys and general guides either lacked practical
advice for getting started or were so tool-specific that they failed to provide a broader
understanding of the generative AI landscape. This made it difficult for a reader to grasp
the larger context and application of these tools in creative work.

For our experiment, we selected two sources of data: The Stanford Dogs Dataset 13 and
two paintings created by one of the group members (M.P. Eladhari). During the workshop,
we tested several of the tools listed in Footnote 1. However, due to the limited time available
and the time-consuming nature of model training, we were unable to fully develop the results
of our trials. Nevertheless, in Fig 23 we present an example generated using a tool developed
at the University of Edinburgh, based on Stable Diffusion and GPT-2 models. The tool,
along with its code repositories, is accessible online [1]. For this test, we used two paintings
(shown on the left in Fig 23 as input, along with their titles as text prompts: "I Knew I
Would Find You" and "Toad in Still Water". The generated image, shown on the right,
provides an example of the creative potential offered by these AI tools.

3.16.4 Immediate Needs and Outlook

In our group, we identified the need to conduct a comprehensive survey of available generative
AI tools that can be used to train models on individual or collective artistic works. This
survey would assess these tools based on the following criteria:

Creativity Support: How the tools can be integrated into and enhance the creative
process.
Affordances: The types of artifacts the tools can generate and the creative possibilities
they offer.

13 http://vision.stanford.edu/aditya86/ImageNetDogs/

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 69

Figure 23 Illustration of combining two paintings by the same artist.

Accessibility: How easy the tools are to use, considering both technical complexity and
financial cost.

Such a mapping would provide valuable guidance to artists and designers by helping to:
Identify tools that complement or even expand their individual artistic practices;
Produce artifacts aligned with their artistic vision; and
Evaluate whether they possess the necessary skills and resources to effectively use a
particular tool.

Looking ahead, potential future collaborations within our subgroup include the creation
of:

A practical guide tailored for artists and designers.
A practical guide bridging computer scientists and artists.
Specifications outlining the minimal data requirements for training or fine-tuning various
generative models.

3.16.5 Summary

In our subgroup report Small Data Sets for Designers and Artists, we explored how generative
AI can be integrated into creative practices, focusing on the challenges and possibilities
of using small datasets to train models for individual artistic work. We highlighted the
importance of accessible tools and practical guides to help artists like us to maintain control
over our creative visions while addressing issues like intellectual property.

References
1 Pavlos Andreadis, Kage, P. Artificial Intelligence and Storytelling. Course of The University

of Edinburgh, https://kage.dev/ai-storytelling-backstage/, 2022.
2 Alastair Brotchie, Le Lionnais, F., Mathews, H. Oulipo laboratory: texts from the "Biblio-

thèque oulipienne". Atlas anti-classics, Atlas press, London, 1995.
3 Alastair Brotchie, Gooding, M. (eds.) A book of surrealist games. Shambhala Redstone

Editions, Boston, 1995.
4 Giorigio Franceschelli, Musolesi, M. Creativity and Machine Learning: A Survey.

https://doi.org/10.48550/ARXIV.2104.02726, 2021.

24261

70 24261 – Computational Creativity for Game Development

5 Anne Ploin, Eynin,R., Hjort, I., Osborne, M. (2022). AI and the Arts: How Machine
Learning is Changing Creative Work. Report from the Creative Algorithmic Intelligence
Research Project. Oxford Internet Institute, University of Oxford, 2022.

6 Anna Ridler. Repeating and remembering: the associations of GANs in an art context.. In:
The 31st International Conference on Neural Information Processing Systems.New York:
Curran Associates Inc. 2017.

7 Helena Sarin. Why Bigger Isn’t Always Better With GANs And AI Art,
https://www.artnome.com/news/2018/11/14/helena-sarin-why-bigger-isnt- always-better-
with-gans-and-ai-art, visited 2024-06-20, 2018.

8 Gabriel Vigliensoni, Phoenix Perry, Rebecca Fiebrink, and others. A Small-Data Mindset
for Generative AI Creative Work. Generative AI and HCI - CHI 2022 Workshop, 2022.

3.17 Evaluating the Generative Space of Procedural Narrative
Generators

Emily Short (Oxford, GB), Gabriella A. B. Barros (modl.ai - Maceio, BR), Alex J. Cham-
pandard (creative.ai - Wien, AT), Michael Cook (King’s College London, GB), João Miguel
Cunha (University of Coimbra, PT), Alena Denisova (University of York, GB), Antonios
Liapis (University of Malta - Msida, MT), Mirjam Palosaari Eladhari (Stockholm University,
SE), Johanna Pirker (LMU München, DE), Gillian Smith (Worcester Polytechnic Institute,
US), Anne Sullivan (Georgia Institute of Technology - Atlanta, US), and Tommy Thompson
(AI and Games - London, GB)

License Creative Commons BY 3.0 Unported license
© Emily Short, Gabriella A. B. Barros, Alex J. Champandard, Michael Cook, João Miguel Cunha,
Alena Denisova, Antonios Liapis, Mirjam Palosaari Eladhari, Johanna Pirker, Gillian Smith, Anne
Sullivan, and Tommy Thompson

This group discussed the problem of evaluating procedural narrative generators, as a sub-
category of procedural generation tools. While there is existing scholarship around how to
categorize procedural generation tools for level design (for instance), there is little that aims
to assess the quality and variety of procedural narrative generation.

This is an area of potential value to the game industry, as well as a matter of academic
interest. There is commercial appetite for games that can present players with a wide
variety of novel and engaging stories, but building effective procedural narrative systems is
unpredictable and bug-prone, and the difficulty of assessing their quality during production
causes many such prototype systems to be removed from industry projects prior to launch.
Evaluative frameworks that would allow studios to build and validate their innovation more
confidently would help to alleviate these problems.

In discussing this framework, the group wanted to focus on the narrative qualities of
generated output rather than to restrict their analysis to any specific type of game (or even
to insist that the objects analyzed be games at all). Procedural narrative generators might
include games that produce a narrative in the course of play via simulation or other means
(Dwarf Fortress, Façade, Versu) as well as non-interactive story generators or story-sifting
approaches. They might also be hand-authored or built on a deep learning model such as an
LLM. For the purposes of this discussion, we were interested in considering the generative
space of such generators regardless of their use case or implementation.

We next considered some possible evaluative and descriptive criteria for generated output.
Evaluative measures were meant to be those that could be directly used to assess the quality

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 71

of the output; tendency towards repetition; novelty or surprise in generated outputs; measures
of creativity (always challenging to identify); and analyses of how players specifically in
interactive generators chose to interact (e.g. whether there are some choices that are never
selected, or choice points at which the player often paused for thought). Descriptive measures
were those that simply attempted to identify important aspects of the generated game, such
as structures that emerged in player choices or in graphs of automated testing.

The group here recognized that there were many possible users of this kind of evaluative
framework (authors, analysts, narrative designers or product managers in a game studio, or
the players themselves); many possible data sources that might be the subject of analysis
(the static content modules of a game, traces of real playthroughs, traces of automated
playthroughs, qualitative feedback, or even complexity analysis of structural change over
time); and many objectives for its use (assuring quality, making sure that the game generated
stories that were aligned with aesthetic intent, or identifying changes in a generator over
time).

The final phase of the discussion focused on attempting a specific approach: a framework
for looking at playable interactive games that were tested by an auto-playing bot or by
human players, and seeking to identify patterns such as building (or receding) success of the
protagonist in their goals, as well as important choices or reversals. Here it was suggested
that tracking key variables over time (such as the relationship with another character, or the
player’s health) would produce curves that correlate to perceived plots: for instance, a plot
in which the player never got on with their grumpy neighbour would appear distinct from
one in which they were friends from the start – or from one in which they became close only
at the end of play.

This idea was pursued in a second working group on the subsequent day.

References
1 Smith, Gillian Whitehead, Jim. Analyzing the expressive range of a level generator, 2010.

10.1145/1814256.1814260.

3.18 Generative Space Analysis for Procedural Narrative Generation
Emily Short (Oxford, GB), Gabriella A. B. Barros (modl.ai - Maceio, BR), Michael Cook
(King’s College London, GB), Gillian Smith (Worcester Polytechnic Institute, US), Tristan
Smith (Creative Assembly - Horsham, GB), Anne Sullivan (Georgia Institute of Technology -
Atlanta, US), and Tommy Thompson (AI and Games - London, GB)

License Creative Commons BY 3.0 Unported license
© Emily Short, Gabriella A. B. Barros, Michael Cook, Gillian Smith, Tristan Smith, Anne Sullivan,
and Tommy Thompson

Following on the narrative metrics workgroup day one of this Dagstuhl, in this working
group we pursued the idea of characterizing generated narratives by considering stat changes
associated with important story features.

For instance, a game or story generator that produced romance stories might track the
degree of attraction between the protagonist and each of two suitors; a generator that allowed
the protagonist to reach maximal attraction with either suitor at the end of the story could
meaningfully be said to offer more narrative range than a generator that always required
the protagonist to end up attracted only to one of them, but less range than a generator
that also offered affordances for no attraction or for attraction to both suitors as viable final

24261

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

72 24261 – Computational Creativity for Game Development

outcomes.
Moreover, the trace could reveal meaningful variation during the midgame as well as at

the endings: a generator that allowed for either a swift or a gradual development of attraction
might be providing greater narrative range than one in which attraction always increased at
a steady pace.

We decided to approach in particular the question of a story generator that was a playable
interactive game, where we were interested in visualizing:

characteristic behaviour of a single numerical stat (for instance, a player trace in which
the player quickly achieves victory, in contrast with one in which the player gains more
slowly or never wins)
correlated behaviour of two stats (for instance, a player gains wealth in exchange for
relationship status with a particular non-player character)

We expected that in some cases, the trace of a given stat from playthroughs would be
tightly constrained (for instance, a player power stat might be monotonically increasing
with only slight variations in the pace of gain), while in others, it might be almost fully
unconstrained (e.g., a player’s currency holdings might change at arbitrary times as the
player gained loot drops or chose to spend money at a store). The most revealing traces,
however, would be those for stats that were somewhat constrained by gameplay systems but
which could nonetheless assume more than one shape in a meaningful way.

In order to explore these questions more rigorously, the team built several prototypes, as
follow:

Two short narrative games in the Ink programming language, in which significant story
stats changed depending on player choice. One represented a tea-time conversation with
a Mr Wickham and Mr Darcy, with stats representing their reaction to the player, and
the other which represented travel aboard a leaky raft, where the player needed to try to
reach the shore before the raft sank

A 2D visualization tool that graphed the progress of these stats in player traces generated
from these games; different stats were mapped on top of one another in the same 2D
space, which allowed the viewer to recognize correlations between particular stat pairs,
but which made it difficult to present many traces simultaneously in order to understand
the overall generative space of the story
A 3D visualization tool that showed stats on different axes together with their change
over time

The team further speculated about an MRI-like visualization that would show slices
through a three-dimensional state space, showing a heat map arising from many playthroughs
in order to help identify the typical emergent shapes. We distributed links to the sample
games to other Dagstuhl participants and were able to collect around half a dozen traces of
player data for analysis.

Even with these simple examples, it was evident that there would be assorted challenges
in using this approach to interpreting the shape of generated narratives. Our turn-based
games allowed for only a small amount of variation in the length of the play session, but
even in these circumstances, slight differences in the time axis could make it difficult to judge
whether two traces were narratively similar or whether the delay in one run constituted a
narratively meaningful distinction. The group discussed, but did not have time to explore
implementing, ideas whereby the curve of other game stats could be normalized against
specific "tentpole" game events.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 73

The group also identified a need for qualitative validation: a core assumption of this
approach is that players will regard games with different stat curves as describing different
narrative experiences, and that developers (or the persons responsible for creating the
analysis) will be able to anticipate which stats are relevant to assess in this way. This
assumption would also need to be validated.

3.19 Meaningful Computational Narratives
Pieter Spronck (Tilburg University, NL), Maren Awiszus (Viscom AG - Hannover, DE),
Gwaredd Mountain (Square Enix Limited - London, GB), Mike Preuß (Leiden University,
NL), Hendrik Skubch (Square Enix AI & ARTS Alchemy Co. Ltd. - Tokyo, JP), Tristan
Smith (Creative Assembly - Horsham, GB), and Tony Veale (University College Dublin, IE)

License Creative Commons BY 3.0 Unported license
© Pieter Spronck, Maren Awiszus, Gwaredd Mountain, Mike Preuß, Hendrik Skubch, Tristan Smith,
and Tony Veale

Generative AI offers the opportunity to generate narratives. For instance, a tool such
as ChatGPT can take the setup of a storyline and expand it, taking into account the
specifications of a story designer. There are, however, some issues with this approach to
storytelling:

There is no guarantee that the generated story will fit the specified background
There is no guarantee that the generated story will be interesting
There is no guarantee that the generated story will allow for a suitable continuation

The workgroup ran some simple experiments to test the limitations of a tool such as
ChatGPT, and discussed approaches to ensure that generated storylines are meaningful.

3.19.1 Storyline quality

The quality of a generated storyline should be high. That entails that the storyline must be
“meaningful” and “good”. These two terms need further clarification.

The workgroup defined “meaningful” in the context of storylines as the requirement that
within the story, all actions have observable consequences. This is particularly important
within the context of games, as game players want to influence the story with the actions
that they perform.

The workgroup defined “good” in the context of storylines as the generated storyline
having the following four features:

Semantic coherence
Pragmatic coherence
Understandable arcs
Relatable arcs

The last feature, relatable arcs, is not an absolute necessity, but it tends to be really hard
to get players to engage with a story in which there is nothing that they find relatable.

24261

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

74 24261 – Computational Creativity for Game Development

3.19.2 ChatGPT test

In testing the ability of ChatGPT 4 to generate a storyline fitting the requirements of a
game designer, responding to player actions, the workgroup gave ChatGPT the following
instruction:

You are the Game Master in a Wild West Story Campaign. We are currently in a scene
where the player is about to find a caravan on the road which is currently being ambushed by
bandits. The kind of Caravan, the motivation of the bandits, any names and characters are
free for you to choose. There are three endings to the scene - either the player drives off the
bandits with force, negotiates with them, or they side with the bandits and extort the Caravan.
Make sure that one of these endings is reached at the end of this conversation, but keep the
outcomes hidden from the player. Based on the players actions, use your descriptions and
guidance to help them reach the ending that matches their actions. Start with a description
of the scene and then react to the actions of the player accordingly.

ChatGPT responded by describing the scene as requested. The workgroup then told
ChatGPT several times that the player was just going to hide and wait. ChatGPT responded
by trying to make the scene more tense, enticing the player to act, which the workgroup
refused to do. At some point, the workgroup asked ChatGPT for suggestions to how the
player should respond. Somewhat surprisingly (considering the initial request), some of the
suggestions would not lead to the desired outcome. E.g., ChatGPT offered the option to just
“wait until one side has defeated the other”, while the original request was that the player
should actively side with the bandits, side with the caravaneers, or negotiate.

The request was that clearly, a particular story beat should be reached, namely one in
which the player gets actively involved in the conflict and helps one of the opposing sides
to be victorious. If this is necessary for the plot to evolve, then apparently, in its current
incarnation, one cannot count on ChatGPT (which is one of the most advanced language
generating tools in existence) to drive the story in the direction that the story designer needs.

3.19.3 Computational narratives

The goal of computational narratives in games is to allow the player the freedom, in a given
situation in the game, to execute any action that they like, as long as it potentially fits the
situation, while the overall plot of the game remains interesting. Generative AI may support
computational narratives, but cannot be relied upon to achieve good results without support
from other processes.

Terminology sometimes used by game developers is as follows: The nebula is the cloud
that contains all possible stories. The fabula consists of locations, characters, events, and
chronology which define the game world. The fabula restricts the storylines to a subsection
of the nebula.

Figure 24 illustrates how a coherent story can be created within the subsection of the
nebula that is constrained by the fabula. The story consist of a sequences of ‘plotlets’.
Plotlets are selected from a dataset. They can be linked together to form the game’s plot.
Which plotlet follows a given plotlet in a story, is determined by player actions.

3.19.4 Plotlets

A plotlet can be considered a story ‘beat’. It consists of the following elements:

Pre-conditions, which specify in which circumstances the plotlet can take place
Action, which specifies which generally formulated action can lead to the plotlet

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 75

Figure 24 Dynamic storytelling.

Description, which in general terms describes the situation that the player is in
Selectable actions, which are generally formulated actions that a player can take when
the plotlet runs
Post-facts per selectable action, which define the new situation

When selectable actions are offered to a player, they need to be described in such a
way that they make sense to the player within the confines of the story, and show that the
dynamic storyteller understands what the player wants to do. For instance, if the story is
the one described above, the player may be in a hiding place observing the scene, and as
their action tell the game that they “cough loudly”. In this particular setting, the dynamic
storyteller should not assume that the player character has a heavy cold, but that they want
to draw the attention from the opposing sides, or that they want to cause a distraction. This
should be reflected in how the game continues.

The selectable actions in the scene above could be “attack bandits”, attack “caravaneers”,
“step forward”, or “distract”. These options could be offered to the player in the situation,
limiting them to actions that lead to other plotlets. The game could also offer the player free
input as their action, but map this input to one of the selectable actions. For instance, if the
player states that they make a handstand, the game could map this to “distract”.

The overall plot of the game is restricted by the available plotlets, giving game developers
some control over which stories are told, while still offering the player the freedom to progress
the story in a way that appeals to them.

3.19.5 AI

When using plotlets, generative AI comes in as follows:

The generative AI can describe the situation which exists at the start of a plotlet
The generative AI can translate generally formulated selectable actions to actions which
fit the current situation
The generative AI can describe the result of the selected action based on the post-facts
specified for the action

24261

76 24261 – Computational Creativity for Game Development

Moreover, as it is common that multiple plotlets would be available to continue a given
story situation, AI analysis can be used to select a follow-up plotlet which best fits a good
overall plotline.

3.20 Small, Safe LLMs for In-Game Generation
Tony Veale (University College Dublin, IE), Paolo Burelli (IT University of Copenhagen,
DK), Amy K. Hoover (NJIT - Newark, US), Antonios Liapis (University of Malta - Msida,
MT), Gwaredd Mountain (Square Enix Limited - London, GB), and Hendrik Skubch (Square
Enix AI & ARTS Alchemy Co. Ltd. - Tokyo, JP)

License Creative Commons BY 3.0 Unported license
© Tony Veale, Paolo Burelli, Amy K. Hoover, Antonios Liapis, Gwaredd Mountain, and Hendrik
Skubch

Scaling laws for large language models (LLMs) have allowed LLMs to achieve dramatic
improvements in prediction accuracy and generative quality as the depth of their architectures
(the number of layers, and of learnable parameters) and the breadth of their training datasets
(ever larger subsets of the world-wide-web) grow in size and ambition (Kaplan et al., 2020).
This impressive scaling allows LLMs to be applied to tasks that seem to demand more
than mere gap-filling or next-word-prediction in text. However, the old truism, popularized
by Stan Lee of Marvel Comics, that “with great power comes great responsibility” seems
increasingly apt as LLMs grow in generative power. Their ability to produce novel and
imaginative responses to arbitrary prompts – one might even say “creative” responses – gives
them the ability to amuse and inform, but also an ability to misinform and offend. With
the subtle and contextualized generalizations derived from their large training sets, and
encoded in their large parameter sets, these models learn the best and the worst of the
human condition. This duality, the ability to be used for good or (perhaps unintentionally)
for ill, gives us pause when considering the role that LLMs might play in a new generation of
computer games.

This working group, which explored the topic of “smaller, safer language models for
games”, explored whether smaller LLMs (so-called SLMs), with smaller and more selective
training sets, can mitigate some of the concerns that are foreseen in a games context. The
findings of our group are briefly summarized in the following sub-sections.

3.20.1 Are smaller LLMs inherently safer, or perhaps easier to make safer?

One can imagine that smaller LLMs that are trained on smaller and more controlled trawls
of the world-wide-web will visit fewer of the dark corners of the web and include much less of
the toxic content that lurks within them. Smallness is not in itself any guarantee of quality,
for it is not the case that language users only learn to be abusive or offensive at a certain scale
of language acquisition, after they have first learnt to be fluent and felicitous. Indeed, one
can make the argument that large LLMs incorporate more knowledge of the world, tacit and
vicarious as is is, and so can better reflect on why a certain response may be inappropriate
or objectionable. That is, larger LLMs have more fully developed moral imaginations, or at
the least the makings of such a capacity, and can better reason about their own goals and
high-level instructions.

Offensive capabilities come in two forms: the ability to use words that are offensive in
themselves, the kind of words that would traditionally go on a “blacklist” or “blocklist”,

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 77

and the more creative ability to use inoffensive words to achieve offensive ends. Even if we
carefully control the training of a small LLM so as to exclude the latter, we cannot guarantee
that the LLM lacks the capacity for the latter, intentionally or otherwise.

Nonetheless, for tightly-controlled tasks in tightly-controlled domains, such as a well-
defined game world, smaller LLMs can be trained from scratch to serve the specific needs of
that world, and to only speak the language of that world. Our group considered, for instance,
the fictional world of an Old Wild West game, and the generative needs of this domain,
including e.g., the language of settlers, of bandits, and of Native Americans (who would
not be described as such within the game). We certainly would not want our NPCs to use
modern idioms or other anachronisms that would diminish the suspension of disbelief by the
game’s players. A smaller LLM can be more easily moderated for such a domain, to exclude
e.g., references to Native Americans as “savages.” These references were commonplace in
the Wild West movies of the 1950s and 1960s which still shape our expectations of such a
game today, but they are no longer acceptable, even if placed into the mouths of fictional
characters that players are not expected to identify with. In short, then, smaller LLMs better
allow us to tailor their generative capabilities to the sensitivities and needs of a specific game
or brand.

3.20.2 Can smaller, bespoke LLMs be packaged with games and used locally?

A key issue with using LLMs for games concerns the latency and cost of using commercial
models in the cloud. For an individual user of OpenAI’s LLM offerings, say, the costs are
typically low: less than a penny for most calls to the API. However, a game with many
thousands of users will accumulate API costs that can prove onerous to the developers of
games that rely on real-time access to commercial models. It becomes more practical then
for games developers to bundle their own, smaller LLMs with their games, so that these
SLMs can be run locally, on the machines of individual players rather than in the cloud
infrastructure of the developer (or a third-party provider).

If we accept that SLMs can be bundled for local use in this way, the question now becomes:
is an SLM capable of generating what a game needs, when it needs it, with the necessary
quality, and with the sufficient speed so as not to drag on the game play? To explore this
question, our group conducted some experiments with a small-ish LLM (or a large-ish SLM)
called TinyLlama. The tiny model is a member of Meta’s LLama family of LLMs that has
just 1.1 billion parameters (contrast this with the 8 billion, 70 billion and 405 billion of
different versions of Llama 3.1). To further shrink the model’s footprint, we used a 4-bit
quantized version of TinyLlama, which allocates just 4 bits apiece to each of its 1.1 billion
parameters. Although TinyLlama has been pre-trained on a smaller corpus than its larger
Llama siblings, its dataset is still substantial at three trillion tokens of text. The model is
compact enough to load into a basic (unpaid) Google colab environment and to run with the
benefit of a single T4 GPU.

Our experiments focused on narrative generation within games, by exploring whether
TinyLlama can be fine-tuned (using a library named Unsloth) for the following tasks: to
generate a short textual narrative from a skeletal plot structure (or “fabula”); to generate
these skeletal plots for itself after it is fine-tuned on a set of more than 10,000 fabula structures
(derived from a symbolic story-generation system named Scéalextric (Veale, 2021); and to
generate dialogue for the characters in these plots, for each step in the plot (as numbered in
the fabula). We built a composite training set with examples of each of these three tasks,
and 100 steps of fine-tuning on this dataset requires less than 5 minutes of GPU time in a
Colab environment.

24261

78 24261 – Computational Creativity for Game Development

3.20.3 Findings and Conclusions

Our findings at the stage are mixed. We are impressed with the competence displayed by
the TinyLlama model on these three tasks, and consider the model’s own outputs to be of
good quality, very much in keeping with the tenor of the fine-tuning data. The model can
generate new fabula structures of its own; impose a fluent rendering on this skeletal form;
and generate apt dialogue for two characters that reflects the core plot and the narrative
rendering. However, this competence also incurred a noticeable latency that we feel is too
great for inline use of these generative capabilities in games. Still, as some careful engineering
may yet allow us to reduce this latency to allow for real-time generation with an SLM in
games, we are encouraged by the current triumph of competence over performance when
using SLMs for “creative" games-related tasks.

References
1 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon

Child, Scott Gray, Alec Radford, Jeff Wu and Dario Amodei. Scaling Laws for Neural
Language Models. ArXiv abs/2001.08361, 2020.

2 Tony Veale. Your Wit Is My Command: Building AIs with a Sense of Humor. Cambridge,
MA: MIT Press, 2021.

3.21 Transferability of Game AI
Vanessa Volz (CWI - Amsterdam, NL), João Miguel Cunha (University of Coimbra, PT),
and Tristan Smith (Creative Assembly - Horsham, GB)

License Creative Commons BY 3.0 Unported license
© Vanessa Volz, João Miguel Cunha, and Tristan Smith

3.21.1 Motivation

While many interesting discoveries have been made in the field of Game AI in recent years
and beyond, their application in the games industry is still very limited. This is due to a
broad range of challenges, including non-technical issues. One obstacle is undoubtedly that
it is seldom obvious how a given algorithmic problem encountered in a game industry setting
(e.g. a resource-efficient and believable opponent) can reliably be solved with AI, i.e. with
some form of performance guarantees. This is especially important if the problem is expected
to change during the course of development of the game; it needs to be guaranteed that
changes will not break the AI performance completely.

To do this, we would need to be able to identify what part of an existing solution is
transferable to which other problem (in the same game or beyond). In the following, we
therefore first address which different types of transferability may exist. We then discuss
some approaches to comparing problems as one popular way to identify opportunities for
transferring knowledge and/or algorithmic approaches. Finally, we point out directions for
future research.

3.21.2 Transferability dimensions

Transferability can have various realisations in different settings. For example, we have seen
the great care that had to go into training AlphaStar in order to show somewhat promising
behaviour against different opponent strategies and game versions [1].

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 79

Even algorithms intended to be more general, like the participants in GVGAI compe-
titions, tend to have different strengths and weaknesses [2]. This also holds for different
hyperparameter settings of said algorithms. While we can certainly explain some behaviour, a
reliable method to identify different games where we would expect to see similar performance
patterns is an unsolved problem [3].

In addition, in image recognition and generation, we know that re-training only the last
few layers of a neural network can achieve results faster than training from scratch (transfer
learning). Some learned parameters and structure of the neural network must thus transfer to
images in general. Relatedly, there has been some work on training weight-agnostic networks
that might be faster to adapt to different environments [4].

We can characterise the above examples of transferability challenges based on two
dimensions of transferability:

Size of gap between contexts: Are we transferring between different game versions of the
same game? Different game levels? Different games of the same genre? Across genres?
To contexts beyond games?
Level of abstraction: What is it that we attempt to transfer? A trained model? The
training setup and associated hyperparameters? Knowledge about strengths, weaknesses,
and performance estimates of different approaches? Predictions on training costs and
resources?

3.21.3 Problem similarity

In order to investigate which classes of transferability are realistic, a comparison approach
between different problems (games) is needed (among other things). We list some existing
ideas below:

Anecdotally, in the game industry this topic is approached by characterising different
tasks based on traits like independence/parallelisation, allocation/optimisation, domain
considerations, necessary accuracy and speed, and degree of design control.
In games research, game genres (platformer, shooter etc) are often utilized to characterise
games. Games of the same genre are often assumed to be similar to each other, as well
as levels of the same game.
There are also hand-crafted features for game characterisation in the context of different
general game playing frameworks [5, 6, 7].
Research on level blending in the context of procedural content generation (via machine
learning) often requires representing different (selected) games with the same representa-
tion, which allows for comparisons in that representation space [8]. See also the section
on distance and density measures 3.13.
In related domains (e.g. evolutionary optimisation), various hand-crafted and data-driven
features exist for the purposes of problem characterisation as well as for automatic
algorithm selection. However, this is still an active area of research when it comes to
interpretability and robustness of the features, as well as transferability of the results in
different dimensions and settings. [9]
In popular culture, games are often described in the context of other games. A concept
of similarity is therefore implicitly established. This includes gameplay, but also cultural,
location and historical connections [10, 11].

24261

80 24261 – Computational Creativity for Game Development

3.21.4 Future directions

Beyond what was described in section 3.21.3, further avenues for research exist in terms of
problem comparison and transferability of game AI research in general:

Compute or automatically select features, for example based on:
an encoding obtained from large language models processing a game description (prose,
game description language, player reviews).
performance comparison of different AI and human players.
human labelling to allow for supervised learning.

Identify what aspects of a game might be subject to change during the development
process, and ensuring robustness against these changes in the game-playing AI (Transfer
across versions, unclear abstraction level).
Computing worst-case performance for games as a way of establishing guarantees (Transfer
performance estimates, unclear context gap).
Based on the identified dimensions described in section 3.21.2, survey and categorise
existing work on transferability / generalisability.
Continue research on robustness of game AI using techniques such as adversarial training
and curriculum learning.

References
1 O. Vinyals et al., “Grandmaster level in StarCraft II using multi-agent reinforcement

learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.
2 D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and S. M. Lucas, “General

Video Game AI: A Multitrack Framework for Evaluating Agents, Games, and Content
Generation Algorithms,” IEEE Trans. Games, vol. 11, no. 3, pp. 195–214, 2019.

3 H. Horn, V. Volz, D. Pérez-Liébana, and M. Preuss, “MCTS/EA hybrid GVGAI players
and game difficulty estimation,” in IEEE Conference on Computational Intelligence and
Games (CIG), 2016.

4 A. Gaier and D. Ha, “Weight Agnostic Neural Networks,” in Advances in Neural Information
Processing Systems, Curran Associates, Inc., 2019.

5 P. Bontrager, A. Khalifa, A. Mendes, and J. Togelius, “Matching Games and Algorithms
for General Video Game Playing,” AIIDE, vol. 12, no. 1, pp. 122–128, 2021.

6 A. Mendes, J. Togelius, and A. Nealen, “Hyper-heuristic general video game playing,” in
IEEE Conference on Computational Intelligence and Games (CIG), 2016.

7 M. Stephenson, D. J. N. J. Soemers, É. Piette, and C. Browne, “Measuring Board Game
Distance,” in Computers and Games, vol. 13865, in Lecture Notes in Computer Science, vol.
13865., pp. 121–130, 2023.

8 V. S. R. Atmakuri, S. Cooper, and M. Guzdial, “Game Level Blending using a Learned
Level Representation,” in IEEE Conference on Games, 2023.

9 A. Nikolikj, S. Džeroski, M. A. Muñoz, C. Doerr, P. Korošec, and T. Eftimov, “Algorithm
Instance Footprint: Separating Easily Solvable and Challenging Problem Instances,” in
Proceedings of the Genetic and Evolutionary Computation Conference, in GECCO ’23, pp.
529–537, 2023.

10 J. P. Zagal, “A framework for games literacy and understanding games,” in Proceedings of
the 2008 Conference on Future Play: Research, Play, Share, in Future Play ’08, pp. 33–40,
2008.

11 A. de Voogt, A.-E. Dunn-Vaturi, and J. W. Eerkens, “Cultural transmission in the ancient
Near East: twenty squares and fifty-eight holes,” Journal of Archaeological Science, vol. 40,
no. 4, pp. 1715–1730, 2013.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 81

4 Panel discussions

4.1 Discussion
Pieter Spronck (Tilburg University, NL), Duygu Cakmak (Creative Assembly - Horsham,
GB), Setareh Maghsudi (Ruhr-Universität Bochum, DE), and Diego Perez Liebana (Queen
Mary University of London, GB)

License Creative Commons BY 3.0 Unported license
© Pieter Spronck, Duygu Cakmak, Setareh Maghsudi, and Diego Perez Liebana

As per usual, on the Friday before lunch we held a plenary meeting where we were going to
reflect on the past week, and look forward to a potential follow-up. This is a report on the
discussion.

4.1.1 Preparing for the event

Several participants remarked that they found it a positive element that it was not necessary
to specifically prepare for the event. However, for newcomers this was not immediately clear
from the invitation. Moreover, some preparation possibilities could be welcome. The Discord
group set up for the event would make this relatively easy, by, for instance, having a resources
channel with documents, links to tutorials, and tools that may be used during the event in
case delegates want to install them beforehand.

More work could also be done to connect people with each other. People spontaneously
connected through Discord, specifically for travel arrangements, but we could try to let
people also connect for topic discussions.

It might be nice if some sponsoring can be found to support people with less financial
means to come.

4.1.2 Schedule

The general schedule for each day was a plenary session of about half an hour after breakfast,
followed by workgroups. In most cases, the workgroups that ran before lunch were also
run after lunch. There was some time set aside right after lunch for those who wanted to
take a walk. Around 5 o’clock a one-hour plenary session was held in which the workgroups
reported on their results. After dinner there was time for social activities; some of these were
organized (a pub-quiz – which should probably be limited to three questions rather than
six) and some spontaneously organized (a tutorial, a movie, and two roleplaying games), but
most consisted of people spending time together in discussions and game-playing.

The organizers had been struggling a bit to reserve time for people exercising. It was
considered to move the last plenary session of the day to after dinner, so that the time slot
between five and six o’clock could be used for exercises, but ultimately on Monday morning
it was decided not to do that, and just allow people to leave a workgroup earlier if they want
to exercise. Most agreed at the end of the week that this is the best approach, as the days
are long and intensive and we should not schedule work activities after dinner.

4.1.3 Monday

The Monday tends to be a day where too much happens. We started with an introductory
game which took quite a lot of time. The game used was “two truths and a lie,” which
took over an hour-and-a-half to run. This is clearly too long. It was suggested to simply

24261

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

82 24261 – Computational Creativity for Game Development

let everyone introduce themselves quickly with one sheet (and have the sheets available for
perusal in Discord), and maybe have an introductory game on Monday after dinner. It would
even be possible to do this on Sunday night, though not everyone may be present then, and
some who had to travel for a long time might already have retired. A small questionnaire up
front, to which the answers are shared via Discord, may also work.

After the introductory game workgroups were proposed. There was just enough time to
do this before lunch, so that the workgroups could start after lunch. The problem is that
these workgroups were relatively short, lasting only half a day; no more than two hours
total (excluding coffee breaks). With a bit more preparation this time could be used more
effectively. We could plan tutorials on the Monday afternoon, and/or preparation work for
workgroups that are going to be run from Tuesday to Thursday. This would work best if some
workgroups would already be known before the event takes place. For instance, collecting
information before the event on workgroup ideas via online forms could make the use of time
more effective.

4.1.4 Organizing workgroups

Some suggestions were made to streamline workgroup organization. In particular, sometimes
people were trying to find the rooms where certain workgroups were held. A good suggestion
was to have a large grid hanging in the plenary meeting room, with a list of rooms and an
indication where workgroups are located. It would also help if it is made explicit somewhere
(either on such a grid, or in Discord) what a workgroup intends to do. This will help
participants who want to have a ‘ bumblebee’ approach to visiting workgroups.

4.1.5 Workgroup presentations

Workgroup presentations are very useful to communicate to all participants what a workgroup
did. Doing this with sheets is extra helpful, as those sheets can then later be used to base
proceedings on, and can be used as a point of reference for all participants. However, there
are at least two issues with the sheets. The first is that some presentations were rather
long, and since there usually were five presentations in the one-hour time slot before dinner,
sometimes the later presentations were pressed for time too much. The second is that
sometimes participants were still working on sheets during the presentations, which meant
that they could not follow the presentations others were giving.

The first may be solved by limiting the number of sheets to five, and keeping stricter
track of time. The second may be harder to solve (though limiting to five sheets may help
for that as well). However, this shouldn’t mean that information that is relevant is not kept
track of using sheets, only that a maximum of five sheets should be presented.

Another helpful suggestion to save time was that if a workgroup intended to continue
the next day (which happened for multiple workgroups), their presentation should be really
short and mostly focusing on what will be done the next day. This would mean that several
presentations would be use a considerably reduced amount of time.

As support for the presentations, people also suggested using our Discord server having
a dedicated channel for outputs of the workgroups, or a Google Drive folder dedicated to
this purpose, where each group stores their final materials. This could contain presentations,
links, code and even their final workgroup reports.

Duygu Cakmak, Setareh Maghsudi, Diego Perez Liebana, and Pieter Spronck 83

4.1.6 Rules of conduct

Because we want the event to be a safe place, we introduced rules of conduct for a previous
event, and continued using them now. However, we now realized that if someone has an
issue, having them contact the organizers may not (always) be the best approach. We should
appoint two trusted people (one man, one woman) as independent confidential supports. We
still do not expect that they will have a lot of work to do, but having them present would be
appreciated.

4.1.7 Topics for future events

The Creative Game AI theme for the event was really topical, and almost all (if not all)
workgroups focused on the theme, and almost all (if not all) topics presented in the proposal
were researched. The organizers elicited suggestions for future topics. The following were
suggested:

Games and open-endedness, artificial life, creativity
Emergence
Relatedness between human intelligence and game AI
Transferability from games and computer science to other disciplines
Research practices, holes in methodologies, comparing methods
Game AI and education
Ethics and morality, both their influence on games and how they can be “improved” with
games

It was also suggested to replace the term “game” with the term “play”, to expand the
subject area.

Considering the success of the event and the enthusiasm of the participants, an event in
2026 would be very welcome.

24261

	Executive Summary Pieter Spronck, Duygu Cakmak, Setareh Maghsudi, and Diego Perez Liebana
	Table of Contents
	Working groups
	AI for Voice Generation from Text Maren Awiszus, Filippo Carnovalini, and Pieter Spronck
	Meaningful Acoustics for Board Games Filippo Carnovalini, Greta Hoffmann, Chengpeng Hu, Leonie Kallabis, Matthias Müller-Brockhausen, and Mike Preuß
	Roguelike in a Day M Charity, Alex J. Champandard, David Melhart, and Matthias Müller-Brockhausen
	AI for Romantic Comedies II Michael Cook, Gabriella A. B. Barros, Alena Denisova, Ahmed Khalifa, Antonios Liapis, Johanna Pirker, Emily Short, Gillian Smith, Anne Sullivan, and Tommy Thompson
	AI for Speedrunning Michael Cook, Maren Awiszus, Filippo Carnovalini, M Charity, and Alexander Dockhorn
	Skill-Discovery in (Strategy) Games Alexander Dockhorn, Manuel Eberhardinger, Chengpeng Hu, and Matthias Müller-Brockhausen
	Introducing AI Experience: Games UX in the Age of Generative AI Anders Drachen, Paolo Burelli, Leonie Kallabis, and David Melhart
	LLM-based Program Search for Games Manuel Eberhardinger, Duygu Cakmak, Alexander Dockhorn, Raluca D. Gaina, James Goodman, Amy K. Hoover, Simon M. Lucas, Setareh Maghsudi, and Diego Perez Liebana
	Computational Creativity for Game Production: What Should Be Left Untouched? Christian Guckelsberger, João Miguel Cunha, Alena Denisova, Setareh Maghsudi, Pieter Spronck, and Vanessa Volz
	Personal AcCompanion AI Greta Hoffmann, João Miguel Cunha, Chengpeng Hu, Leonie Kallabis, and Pieter Spronck
	Game Asset Generation Leonie Kallabis, Chengpeng Hu, and Matthias Müller-Brockhausen
	Communal Computational Creativity Antonios Liapis, Alex J. Champandard, João Miguel Cunha, Christian Guckelsberger, Setareh Maghsudi, David Melhart, Johanna Pirker, Emily Short, Hendrik Skubch, Tristan Smith, Tommy Thompson, and Vanessa Volz
	Distance and Density in Various Spaces Simon M. Lucas, Duygu Cakmak, Filippo Carnovalini, M Charity, Amy K. Hoover, Ahmed Khalifa, Setareh Maghsudi, and Vanessa Volz
	Sub-optimal Bots David Melhart, James Goodman, Christian Guckelsberger, Greta Hoffmann, and Diego Perez Liebana
	Arts & Crafts & Generative AI Mirjam Palosaari Eladhari, Gabriella A. B. Barros, Alena Denisova, Amy K. Hoover, Chengpeng Hu, Leonie Kallabis, Ahmed Khalifa, Matthias Müller-Brockhausen, Gillian Smith, and Anne Sullivan
	Small Data Sets for Designers and Artists Mirjam Palosaari Eladhari, Gabriella A. B. Barros, Amy K. Hoover, and Ahmed Khalifa
	Evaluating the Generative Space of Procedural Narrative Generators Emily Short, Gabriella A. B. Barros, Alex J. Champandard, Michael Cook, João Miguel Cunha, Alena Denisova, Antonios Liapis, Mirjam Palosaari Eladhari, Johanna Pirker, Gillian Smith, Anne Sullivan, and Tommy Thompson
	Generative Space Analysis for Procedural Narrative Generation Emily Short, Gabriella A. B. Barros, Michael Cook, Gillian Smith, Tristan Smith, Anne Sullivan, and Tommy Thompson
	Meaningful Computational Narratives Pieter Spronck, Maren Awiszus, Gwaredd Mountain, Mike Preuß, Hendrik Skubch, Tristan Smith, and Tony Veale
	Small, Safe LLMs for In-Game Generation Tony Veale, Paolo Burelli, Amy K. Hoover, Antonios Liapis, Gwaredd Mountain, and Hendrik Skubch
	Transferability of Game AI Vanessa Volz, João Miguel Cunha, and Tristan Smith

	Panel discussions
	Discussion Pieter Spronck, Duygu Cakmak, Setareh Maghsudi, and Diego Perez Liebana

