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Abstract—Modern Tabletop Games present various interesting
challenges for Multi-agent Reinforcement Learning. In this paper,
we introduce PyTAG, a new framework that supports interacting
with a large collection of games implemented in the Tabletop
Games framework. In this work we highlight the challenges
tabletop games provide, from a game-playing agent perspective,
along with the opportunities they provide for future research.
Additionally, we highlight the technical challenges that involve
training Reinforcement Learning agents on these games. To
explore the Multi-agent setting provided by PyTAG we train the
popular Proximal Policy Optimisation Reinforcement Learning
algorithm using self-play on a subset of games and evaluate the
trained policies against some simple agents and Monte-Carlo Tree
Search implemented in the Tabletop Games framework.

Index Terms—Reinforcement Learning, Multi-agent, Tabletop
games, board games, benchmark

I. INTRODUCTION

N the past decade Reinforcement Learning was shown to

be a powerful paradigm, beating world champions in the
board game Go [1] and in complex video games [2], [3]. Many
of these successes are on classical board games, card games
and video games. Modern Tabletop Games (TTGs) are often
overlooked, mainly due to the lack of a unified framework
that would support their research. Previously, a few standalone
modern TTGs have been implemented for research purposes,
such as “Settlers of Catan” [4] and “Splendor” [5], but all use
their own interface and methods without direct compatibility
with each other. To address this, the Tabletop Games (TAG) [6]
framework was proposed to serve as a research framework
with a shared interface to play and implement TTGs, with
over 20 games currently in its collection. Most of the work on
TAG has used Statistical Forward Planning (SFP) algorithms
(e.g. Monte-Carlo Tree Search [7]); Reinforcement Learning
(RL) methods have not been employed before due to various
technical challenges and the lack of support for RL algorithms.

Multi-agent Reinforcement Learning (MARL) [8] involves
more than one agent situated in the same environment compet-
ing against each other, cooperating to achieve a common goal
or a mix of the two. Advancing MARL methods has various
potential real-world applications, as a lot of these problems
can be naturally described as multi-agent systems: robotics,
self-driving cars, video games and most tabletop games.

The modern board games industry has been rapidly growing
in the past decade with more and more games published each
year [9]. Modern TTGs are designed to be played with 2 and

All authors are with Queen Mary University of London.
{m.balla, g.e.m.long, james.goodman, r.d.gaina, diego.perez} @qmul.ac.uk

often more players with different types of interactions among
them. These games can be competitive, where players race
against each other to reach the game’s winning condition first,
or fully cooperative, such as Pandemic, where the players have
to work together in order to win. Many games have a mix
of competitive and cooperative settings; players may form a
temporary alliance to stop another player from winning.

In our previous work [10], we introduced PyTAG, a python
API that supports Reinforcement Learning in the collection of
games that the Tabletop Games (TAG) framework offers. Our
initial work explored the possibility of training Reinforcement
Learning agents against two simple baseline agents: a Random
agent (which samples actions with uniform probability) and
the One-Step Look-Ahead agent (OSLA; using the game’s
forward model, it tries all the available actions and chooses
the one that results in the highest evaluation score). Training
against these specific opponents has served as a proof-of-
concept to demonstrate the possibility of having RL agents
playing these games but did not fully capture the multi-agent
dynamics presented by the games. In the previous setting, the
opponents could be viewed as part of the environment, which
allowed training single-agent RL algorithms against them. One
of the main challenges of the MARL setting is the requirement
to be able to adapt to different play styles and strategies, which
was not explored previously.

To extend our previous work, in this paper we further
explore the MARL setting of TTGs, by introducing a self-
play setting to train Reinforcement Learning agents in PyTAG
and describe the technical challenges that arise from this. By
using self-play, the comparisons against the baseline agents
are fairer. To evaluate the trained agents, we periodically
take a snapshot of the learning agent and evaluate against
the random agent, OSLA and Monte-Carlo Tree Search. In
addition to self-play, we also added two new games: “Sushi
Go!” (see Figure 1) and “Dots and Boxes”. Sushi Go! is
interesting as a strategic set collection card game in which
the degree of unknown information declines over time. Dots
and Boxes is a more complicated perfect information game
than previously included, with deceptive short-term rewards.
Overall, PyTAG presents a python interface to implement Re-
inforcement Learning agents to play the games implemented in
the Tabletop Games framework. To communication between
PyTAG and TAG is done by sharing the memory locations
to support running the games quickly and efficiently. TTGs
come in many forms, which makes it hard to design a general
representation that captures all, hence we proposed interfaces
to support handling their observation and action spaces. To
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Fig. 1: “Sushi Go!” Graphical User Interface in TAG

provide experimental results, we trained the PPO algorithm
against the baseline opponents from the TAG framework to
provide a proof-of-concept. In this version, we extend this
work to the Multi-Agent RL setting by using self-play for
training and only using the baseline agents to evaluate against.
Finally, we present various challenges and opportunities that
Tabletop Games and PyTAG in particular provides. All the
code presented in this paper is available on Github.!

II. BACKGROUND

Reinforcement Learning (RL) studies the interaction be-
tween an agent and its environment. TTGs are typically
designed for at least two players, hence we assume a de-
centralised MARL setting. There are multiple mathematical
models applicable to such problems, but they often assume
strictly turn-taking or simultaneous moves. The closest MARL
setting that captures the challenges presented by TTGs is the
Agent Environment Cycle (AEC) by Terry et al. [11]. In TTGs,
players often do not act simultaneously or take regular turns;
to fully capture this setting we have to introduce a turn order
function that manages which player needs to act in which state.

In our MARL setting, agents are distinguished by a nu-
merical identifier i, so 7; refers to the i** player’s policy.
We assume the availability of a Turn order function 7'(i|s)
that determines the next acting player’s index ¢, given the
current state. The turn order is also used to randomise the
initial starting order at each episode.

At each time step, the agent ¢ (specified by the Turn
order function) receives an observation o that contains all
the observable information that the agent has access to from
its point of view. The agent also receives an action mask
m which indicates which actions are available in the current
state. Based on the observation and the action mask, the agent
chooses an action @ and sends it to the environment. The
environment updates its internal state s with the agent’s action
and transitions into the next state s’. Based on the turn order
function T, the environment gives the next observation o', the
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next action mask m’ and a scalar reward r to ¢/, the player
who needs to make the next decision. In TTGs, players may
get rewarded outside of their turn. In this MARL framework,
these rewards are only awarded the next time that player needs
to select an action (or at game end).

PyTAG is comparable to other Multi-agent Reinforcement
Learning (MARL) benchmarks. Most other frameworks, only
contain a single game with a focus on a specific aspect of
MARL, such as competition [12], [13] or cooperation [14],
[15]. PyTAG implements a shared interface to support a
large collection of Tabletop Games (TTGs) which range from
competitive games such as “Exploding Kittens”, to fully coop-
erative games such as “Pandemic” while also including games
that mix the two such as “the Resistance”. RLCard [16] is a
framework that supports Al research on a collection of card
games. OpenSpiel [17] is a framework that supports single
and multi-agent RL with a collection of classical board and
card games. Ludii [18] uses a description language to define
board games with support for RL and planning algorithms.
Unfortunately, neither RLCard, OpenSpiel or Ludii has the
capacity to support the complexity that TTGs present.

Self-play [19] has been the main driving force behind much
successful multi-agent work in the past, such as AlphaGo [1],
OpenAl five [3] and AlphaStar [2]. Self-play trains the RL
agents against previous copies of itself. This helps explore
the policy space of the environment by always trying to
find weaknesses of previous policies. Unfortunately, self-play
can get stuck in sub-optimal strategies and is not guaranteed
to converge. In various problems, a cyclic strategy loop is
observed, where a set of strategies beat each other without a
“perfect” strategy that would beat all. In these cases various
works attempted to converge to a Nash equilibrium [20].
To avoid sub-optimal and cyclic strategies, AlphaStar [2]
proposed to use a league of different opponents with different
objectives. The Hanabi challenge [14] has been a popular
multi-agent benchmark in the past, posing an interesting
cooperative partial-observable problem. “Hanabi” is a card
game also which is also implemented in the Tabletop Games
framework. Past research on “Hanabi” has a rich history
with self-play agents and how they can be trained to remain
compatible with a larger sets of partners not just the one used
during training. One challenge of self-play in “Hanabi” is that
the overall objective is to train a policy that is compatible with
other strategies, not just the one it was trained with.

MARL problems have been formulated under various math-
ematical frameworks. The two main formalisms are Extensive
Form Games (EFG) [21] and Partially Observable Stochastic
Games (POSG) [22]. These do not fully cover the challenges
TTGs present as they assume either strictly turn-taking or si-
multaneous move games. PettingZoo [11] proposed the Agent
Environment Cycle (AEC), which does allow for varying
turn-orders, but makes scaling difficult to multiple parallel
environments. PyTAG is compatible with the PettingZoo inter-
face, but it was not directly compatible with our implemented
vectorisation and the gym style [23] environment wrappers,
hence this was not used in our experiments.



III. PYTAG

In our previous work [10], we presented PyTAG: a python
API to support Reinforcement Learning in the TAG frame-
work. Our previous paper describes how the observation and
the action spaces are handled in more detail. We give a short
summary of PyTAG here, but see [10] for a deeper focus on
the technical challenges of interfacing TAG and PyTAG, and
dealing with observation and action spaces specifically.

PyTAG has been developed to support creating Reinforce-
ment Learning agents on the collection of games available in
the Tabletop Games (TAG) framework. As TTGs have a wide
range of distinct characteristics, creating a standardised inter-
face to treat the observation and action spaces for all games
presents many challenges. PyTAG aims to keep the framework
accessible to a wider community, hence we aim to keep
the observation and action spaces flexible. We implemented
interfaces in TAG to support a few selected games that could
serve as a starting point to working with any of the existing
(or yet to be created) games in TAG. To add support for a new
game, the user is only required to write two functions: 1, a
function returning a standardised observation from the game
state, with flexibility on how these are represented; and 2, an
action-masking function, returning which actions are available
at a given state. The former allows representing observations
either as a numerical vector or as a JSON string, giving control
to the user’s algorithm on how they want to process them for
decision making. The action masking function is supported by
TAG’s engine by explicitly enumerating all available actions
for each state, so to construct a mask, one only needs to write
a function that matches the available actions with all possible
actions. The action masking also gives the flexibility to design
more advanced action masks, such as action trees [24].

A. Games

In this section we summarise the games we used in this
work, and how we represented their actions and observations.

1) Tic Tac Toe: The simplest game in TAG, “Tic Tac Toe”
is played on a 3 x 3 grid, with players taking turns to draw
their symbol in one of the grid cells. The game finishes when
a player has 3 of their symbols in a line and the player who
achieves this first wins. However, if every cell is filled without
a complete line of symbols, the game ends in a draw.

We represented the game as a 9-dimensional vector: a
flattened version of the board. Similarly, the action space is
also a 9-dimensional vector representing which cell the player
will draw their symbol in. The action mask filters out cells
which are already filled.

2) Diamant: A 2 to 5 player game, where players push
their luck to gain the most treasure. Each turn, players can
choose one of two actions: stay in the cave, or retreat to camp.
Going back to the camp allows to safely bank your treasure.
Staying in the cave allows getting more treasure, with the risk
of triggering a trap and losing all your non-banked treasure. A
third dummy action is to be played when the player is already
at the camp, with no effect on the game; those players can
only observe the other players’ progress.

The observation space is a vector containing the following
information from the game state: tile counters, number of gems
on the last tile, and total number of gems in the cave.

3) Love Letter: A 2 to 4 player card game, where players
try to gain the most favour tokens by either being the last
player standing in a round, or finishing the round with the
highest valued card. Its challenges involve hidden information,
and keeping track of what cards the other players may have.

The observation space is comprised of the player’s current
hand (hot-encoded with 1 bit per card type), the number of
each type of card in the discard pile, and how many favour
tokens are held by each player. Some cards (e.g., the Guard)
have choices in their action (e.g. which player to target with
the card’s power once played), which leads to an increase in
action size. There are only 8 card types in the game, but due
to the possible combinations of playing certain cards, there
are 68 action to choose from.

4) Exploding Kittens: A 2 - 5 player card game. Each turn,
players can play as many cards as desired; however, they need
to finish their turn by drawing a card. If an Exploding Kitten
card is drawn, the player will lose the game, unless they have
a defensive card available. The deck contains n — 1 Exploding
Kitten cards, where n is the number of players. The game has
a reactive turn order: some cards can be used at any point,
others allow for cards to be taken from other players. These
challenges make the game interesting from an RL perspective.

In terms of the observation space, there are counters for
each card type contained in the player’s hands. In addition,
players observe the number of cards in each opponent’s hand,
how many cards are in the draw pile, and, finally, which game
phase is in play. The game phase informs the player whether it
needs to take actions as normal or if it needs to react to some
event. The action space contains drawing a card, playing a
card from hand or reacting to an event resulting in 43 possible
actions.

5) Stratego: A 2-player strategy game, it takes place on a
10 x 10 grid. A player can win by capturing the opponent’s
flag, or if the opponent is unable to make any moves. The
game’s main challenge is hidden information: the enemy’s unit
types are unknown until the unit is involved in combat.

The observation space is a representation of the 10 x 10 grid,
with unit types being hot-encoded. 27 feature maps represent
each player-exclusive unit type. The action space for the game
is quite large: 4400 actions. This is due to each player having
40 units. In addition, the Scout unit type has the ability to
move to any non-diagonal tile, as long as it is unoccupied.

6) Sushi Go!: “Sushi Go!” (shown in figure 10) is a card
game a 2 - 5 player drafting card game where players aim to
accumulate points by playing cards, with points being updated
at the end of each round. At the end of each turn, players pass
their hands to the next player in a clockwise rotation. The main
challenge of this game is the hidden information: in addition
to the players not being able to see opponents’ hands, not all
cards are in play at any one time.

The observation space consists of an encoding of all the
cards visible from the player’s point of view, so this includes
the player’s current hand and all the played cards displayed on
the table. Additionally, it includes scoring-related information.



The action space represents which card the player will play
from its hand, or use a previously played Chopstick card
(which allows playing two cards from the same hand at once)
resulting in 20 possible actions.

7) Dots And Boxes: “Dots and Boxes” is a game for 2+
players, where players aim to complete as many boxes as
possible on the grid the game takes place on. The grid is
made up of dots, which players can join together (horizontally
or vertically) to create edges between contiguous dots. If a
player draws an edge which completes a box, they gain a
point and can draw again. This combo factor comprises the
main challenge of this game: long-term planning is necessary
to achieve these combos, as well as balancing between short
and long-term rewards. The observation space is represented
as the 82 edges, with each edge having a value of 1 if the
player drew it, a value of O if missing, and a value of -1 if it
was drawn by another player. There are 82 possible actions,
one for drawing each edge, but as the game progresses the
valid actions are reduced by one at each step.

B. Challenges of Tabletop Games

The interaction between players in TTGs presents various
MARL settings: fully competitive, cooperative or a combina-
tion of both. As presented in Section II, in the general case
TTGs can have arbitrary turn orders, but there are many strictly
turn-taking and also simultaneous move games that can be
modelled using other MARL formulations. Additionally, in our
case, we assume a decentralised setting, but many games could
make use of a centralised controller - for instance in the game
Pandemic up to 4 players need to cooperate with a common
goal, while in some games a player may have multiple units
to control on the board (for instance the overlord in Descent,
or Dungeon and Dragons in general).

TTGs often have a large amount of hidden information that
comes in many forms, such as opponent’s hands and draw
decks. The result of the opponents’ actions is often not visible
until the end of the game; for instance, in Exploding Kittens,
players often collect cards in their hand, which are drawn
face down. Therefore, other players have no knowledge about
the cards the opponents have until those cards are played.
TTGs also have a high level of stochasticity, by drawing
shuffled cards, rolling dice and randomised initial setups to
support replayability for human players. Some games have
multiple winning and losing conditions, and deceptive scoring
systems [25] where maximising immediate rewards can lead
to suboptimal strategies (i.e: Push your luck games such as
Diamant, or in Catan where it is better to build an ‘engine’ to
acquire the specific resources needed in the late-game and not
necessarily go for immediate points now). Additionally, games
without a scoring function often have very sparse rewards that
require good exploration strategies to find viable policies. In
TTGs, players often receive points during the opponent’s turn
or scores may only get revealed at the end of the game, which
poses an interesting credit assignment problem.

C. Reward Functions

Good reward functions are essential for Reinforcement
Learning algorithms, as they define the agent’s learning ob-

jective. Tabletop games have many kinds of scoring functions.
Most commonly games have a clearly visible individual score,
such as Settlers of Catan where the players need to collect 10
points. Other games have specific winning conditions such as
Stratego, where the player needs to capture the opponent’s flag.
There are also games like Exploding Kittens where players are
eliminated throughout the game and the last standing player
is the winner. For RL, these objectives may be very sparse
or even misleading (short-term vs long-term rewards). TAG
allows implementing game-specific heuristics h : S — R,
which allows defining custom reward functions for each game,
but it requires some engineering effort to do so. In the context
of TAG, Goodman et al. [26] proposed a set of game-agnostic
reward functions to support Statistical Forward Planning al-
gorithms to play at a higher level. We made these reward
functions available for agents implemented in PyTAG as an
attempt to lower the entry barrier and to support developing
new algorithms in the framework. With this addition, PyTAG
supports the following game-agnostic reward functions:
o Terminal (Default); gives the winning player +1, the loser
—1 and in case of a draw 0.5 reward.
o Score; The current player’s in-game score
o Leader; - The difference in score between the player with
the highest score and the current player’s score
e Ordinal; - The current player’s relative position in the
game ranking
The reward function involving scoring (Score and Leader) are
only available in games that have a measurable score, while
the others are available for all games.

IV. METHOD

In our previous work, we presented agents that were trained
directly against specific opponents (Random and OSLA).
Training against stronger agents, such as MCTS slows down
the training significantly as SFP methods require time for
planning for each action selection. Training against specific
opponents also means RL agents may just learn to exploit
the opponents without learning to play the game well more
generally. Training against a specific opponent reduces the
MARL setting into a single-agent setting as during training
the opponents can be modelled as part of the environment.
In this work, we explore the additional challenges that come
with training in the MARL setting by implementing a self-play
setting. In this, the RL agent is only trained against previous
versions of itself with periodic evaluations against the baseline
agents in order to measure relative performance against them.

A. Technical Challenges of Self-play

Working in a full MARL setting in tabletop games poses
new challenges compared to previous works. In the previous
iteration of PyTAG, training was against the baseline agents in
TAG, so the RL agent was only asked to make decisions when
it was its turn. In contrast, in the MARL setting, we need to
manage all agents’ action selections. Other similar frameworks
assume either a strictly turn-taking setting or simultaneous
move action selection. Most tabletop games do not fall into
either of these categories, so we have to assume that at each
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step an arbitrary agent may need to make a decision. Our
proposed training setup is shown in Figure 2.

In this work, we use self-play to train MARL policies.
Throughout training with self-play, the current version of the
learner is regularly saved and added to a pool of checkpoints
which are subsequently re-used as opponents. To stabilise
training the sampled checkpoints are kept as opponents for
an extended period. As previously highlighted, in TTGs the
initial player often has an advantage or disadvantage, or some
asymmetry. For self-play and later for evaluation it is crucial to
train agents that can play well from any player position. With
the episode resets, a random player position is sampled to take
the role of the learner player. At each time step during training
the observations and masks are split into two groups, those
that belong to the learner agents and those for the opponents.
Depending on whether the learner or an opponent is required to
take an action, the observations with the action masks are given
to the corresponding agents. After the actions are selected, they
are merged back together, maintaining the original order, so
each environment gets the corresponding action. After this, the
environment is updated with the actions and the cycle repeats
for the next steps. After taking steps, the learner’s transitions
are stored in a buffer to be used for training later.

Normally, using RL with vectorised environments, the
learner takes the same number of steps in all environments,
resulting in a regular-shaped matrix that can be used for
optimisation. With varying turn-orders, this is often not the
case, as some players may take more actions than others. To
tackle this, instead of waiting for all agents’ transitions to fill
up a predefined length, we do an update as soon as one player
in the environment reaches the desired length. The number of
transitions used for optimisation varies, however, we make use
of every single transition. Waiting for all the buffers to fill up
would lead to new transitions coming in for some already full
buffers, which may result in discarding the extra transitions,
and not using them for optimisation.

To avoid converging to suboptimal policies with self-play
we used various hyper-parameters to control the matchups
during training. First, we specify how many checkpoints we

keep in the opponent pool. Additionally, we define how reg-
ularly checkpoints are added to the training pool. Finally, the
opponent policy should be replaced with a certain frequency.
Keeping opponent policies for a longer period may result
in one-sided matches where the learning agent is not chal-
lenged enough; while keeping only the most recent policies
might result in converging to specific strategies that may
not generalise to other opponents. We also added a hyper-
parameter to bias the opponent sampling probability to take
the latest checkpoint, otherwise with uniform sampling the
new checkpoints get sampled less frequently overall.

B. Actions and Observations

Compared to Video Games, Tabletop Games have fewer
restrictions in terms of actions and observations. Creating a
game-agnostic general representation is a challenging task.
Instead, PyTAG uses game-specific extractors to create repre-
sentations of the action and observation spaces. To add support
to a new game, users only need to implement two interfaces: 1,
to extract observations from the game states (either as a vector
or as a JSON representation) and 2, a function that creates an
ordered list of actions. Currently, 8 games are supported and
adding support for new games is straightforward.

Actions in tabletop games can be more abstract than ones
in video games. This is due to them not being restricted by an
input device such as a controller. In complex tabletop games,
the action space can be very large, and often combinatorial.
This complexity is further compounded by aspects such as
multi-action turns, reactions, and extended actions (actions
which have multiple sub-actions).

At each time step TAG computes the available legal actions
for the current state by default. PyTAG makes use of the list of
available actions to create an action mask, an indicator vector
representing the available actions with 1s and the unavailable
ones with Os. With the action masks, we can assure that the
RL agents can only pick from the valid actions.

V. EXPERIMENTAL SETUP

In our self-play experiments, we follow the logic shown in
Figure 2. For most games, we used simple fully-connected
Neural Network architectures as presented in our previous
work [10]. For Stratego, we used a convolutional neural
network due to its grid-shaped board. Our self-play implemen-
tation extends the PPO implementation from CleanRL [27],
which was also used in our previous experiments.

We list the final parameters used in all the experiments
presented in this paper in this section. TicTacToe and Dia-
mant were used to tune the hyper-parameters. All agents
were trained for 1e6 interactions with the environment (same
budget as used previously) across 3 seeds. We ran experi-
ments for more time steps (2.5e6) but we did not observe
significant changes in most games, hence the previous budget
was maintained for easier comparisons. Learning rates in the
range [0.01,0.0001] were tried, and 0.001 was found to work
best. For self-play, the pool of opponents stores the last 10
checkpoints, and new checkpoints are added every 100,000
interactions with the environment. A new opponent is sampled
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every 20,000 steps from the pool of opponents with 50%
probability to sample the latest checkpoint.

When training using self-play, it is essential to periodically
evaluate the policies to monitor learning progress. In our
experiments, we evaluated the latest policy against the baseline
agents implemented in TAG every 20,000 steps, 5 episodes
per opponent. The evaluation episodes are only used to give
a relative estimate of the RL agent’s performance, but not for
training. Compared to our previous work, this setting is a fairer
comparison against the baseline agents, as the RL agents are
not trained to beat them specifically. Due to the time required
for MCTS to make decisions, our previous work was limited
to training against Random and OSLA. This setup allows
comparisons against MCTS without unreasonable overhead.

One of our main objectives of PyTAG is to provide a
research benchmark that is suitable for running experiments
quickly. Hence we provide all the code required to vectorise
the games, collect statistics and train the RL agents used in
this work. All the experiments were run on a machine with
16 CPU cores without making use of a GPU. With self-play,
we introduce an additional overhead by using multiple neural

networks for inference during training, but even in this setting
an agent can be trained in a few hours on a normal laptop.

A. Opponents

This section describes the opponents (all part of the TAG
framework) that used to evaluate the RL agents. The simplest
agent is Random, which samples a valid action at each step
from the list of available actions with uniform probability. One
Step Look Ahead (OSLA) is another simple agent that uses a
forward model to try all available actions at each step. The
action that leads it to the next state with the highest score
is chosen. In case of a tie, an action is chosen with uniform
probability among the tied actions.

Finally, Monte Carlo Tree Search (MCTS) is also used as
an opponent to evaluate the RL agents. MCTS is a Statistical
Forward Planning method that uses the game’s built-in forward
model to simulate rollouts. MCTS iteratively builds a tree
with estimated state-action values and when a time budget
is reached it returns the best available action. MCTS is a
well-known algorithm for general video and board gaming
with various extensions proposed by the community to tackle
certain problems. In this work, we use the default version
of MCTS implemented in the TAG framework. This version
of MCTS is not tuned for any game specifically but gives a
reliable comparison to the relative strength of the RL agents.

VI. RESULTS
A. Self-play results

Training RL agents using self-play requires further evalua-
tions as playing against previous copies of itself often leads to
close games. Just looking at win-rates during self-play gives
little insight of how the agents are improving due to most
games result in a close to 50% win-rate, hence in figure 3
we show multiple metrics for the chosen games to highlight
how the agents improve throughout training. For clarity, we
picked only the two-player runs to reduce the noise shown
in the four-player runs. As we can see in Exploding Kittens,
the win rate remains close to a 50% which we observed with
most games. In some games the outcome is binary, the player
either wins or loses, but we also have games where fairly
skilled players can tie games. As an example, in TicTacToe
the win rate drops to near zero with agents getting better at
playing the game. In many games, there is no scoring but
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rather specific win condition(s) that end the game when they
are met. On the other hand, games with a clear score give a
good indication of how agents get better at playing the game.
For example, in Diamant, we can see that agents get higher
scores as the learning progresses. In addition, we can observe
the score difference between the winner and the learner which
shows that the games are getting closer, which indicates that
the learner is getting challenged at the right level.

B. Evaluation results

As discussed above, just using self-play makes it hard to
evaluate how well the trained agents can play. To get a better
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Fig. 9: Evaluation win rate and scores in “Dots and Boxes”.

estimate of their performance we used regular evaluations
against the other agents in the framework. We tracked various
metrics against each opponent, such as the RL agent’s win
rate, tie rate, loss rate and score differences from the winner.
Note that all metrics refer to the RL agent’s point of view, i.e:
win rate refers to how often the RL agent wins.

Figure 4 shows the evaluation results on TicTacToe, where
the RL agent has quickly learned how to beat the simple
players Random and OSLA. Although MCTS is a fairly strong
opponent in TicTacToe, the RL agent learns to beat it around
20% of the time towards midway of the training. However,
it loses in most of the other cases playing with a risky
strategy. Towards the end, PPO converged to playing a more
conservative strategy, tying around 90% of the games against
MCTS.

Diamant is a push-your-luck game where the players need
to risk their potential score to score higher. Figure 5 shows
the win rates against the baseline agents. Looking back at the
self-play results (figure 3), on Diamant we can see the RL
agents learned to risk more and explore deeper into the cave.

The results on Love Letter are shown in figure 6. Love
Letter was also a challenging game to master for the RL
agent, as it requires memorisation and inference about the
unknown opponent cards. In Love Letter the RL agent quickly
learns how to play well against the random player, but fails
to converge to a strong policy during training. Looking at the
score differences, even against Random the RL agent plays
close games throughout training while it often gets beaten by
the other agents by a large margin (3-4 points).

Exploding Kittens (figure 7) is a highly stochastic game with
a major element of luck. This stochasticity is reflected in the
learning results where the RL agent has similar performance
to OSLA and Random, and wins against MCTS around 30%
of the time without showing any visible improvement over
the course of training. Interestingly, on the four-player setting
we observe a significant drop in performance which highlights
how having more than 2 players affects the learning dynamics.

Stratego is a highly complex game with a large amount of
hidden information and a large action space. Figure 8 shows
that during self-play the win rates deviate a lot, which we
hypothesise to be due to the agent exploring the strategic
depth of the game. In contrast to noisy self-play win-rates
against the other players, PPO quickly finds a policy that
consistently beats the baseline agents. We believe that the
strong performance on Stratego might be due to other players



struggling more with higher action space sizes and partial
observability.

The first new game added to PyTAG is “Dots And Boxes”.
The results against the baseline agents on Dots and Boxes
are shown on figure 9. One shortcoming of our setting is
that the observations in our experiments were encoded into
a vector representing the owner for each edge without the
spatial information on how they are connected. In addition to
that both OSLA and MCTS were good at preventing the RL
player from scoring which leads to a difficult training setting.
Even for human players Dots and Boxes can be challenging as
winning can be challenging against expert players that require
calculating many turns ahead, and involve sacrificing points
to be able to play in the right turn-order [28]. Due to these
challenges, the RL agent struggled to learn a good policy and
lost all the games against OSLA and MCTS but managed to
beat the Random player all the time when using the Score as
reward. When it only used the terminal rewards it performed
worse than random due to the combination of the large action
space, lack of spatial information and sparse rewards. Even
in this setting, we observe a clear sign of improvement as
PPO quickly learns to beat Random and its score gradually
increases over the course of training.

The next addition to the collection of games supported
by PyTAG is “Sushi Go!”. This game has an interesting
mechanic where each player gets a hand of cards among which
they simultaneously play a chosen card and then give their
hand to the next player. Initially, Sushi Go! contains a large
amount of hidden information which gets revealed completely
as the hands are exchanged. Sushi Go! is a good challenge
to test the memory capabilities of RL agents. The baseline
agents in TAG know what the revealed cards are, so they get
better information for decision-making, but this information
is not represented explicitly in the observations given to the
RL agents. Figure 10 presents the evaluation results obtained
in our experiments. The dashed lines represent cases where
PPO was trained using the game score as reward, while the
solid lines only used the game outcome (win/loss) as reward.
Against Random and OSLA, PPO learns a good policy in both
2 and 4-player setups. Against MCTS, the RL agents do not
perform that well, but that may be due to MCTS having an
effectively perfect memory as the history is encoded within
the full state, while the RL agents only make decisions based
on their current observation which does not include history.
Looking at the score differences on figure 10 we can see that
as the training progresses, the RL agent loses by fewer points,
so with more training PPO may become more competitive.
Using the score as reward has resulted in a significantly better
performance against the simpler agents both in win rate and
accumulated score at the end of the game.

Table II presents the results obtained by evaluating against
the baseline agents: Random, OSLA and MCTS. To facilitate
comparisons, we added the results from our previous paper
in Table I. Note that the performances shown in the table
from the previous paper only show the cases when the agent
was evaluated against the same opponents as it was trained
against. Making direct comparisons against the results from
the previous work is unfair, as the agents are not expected to

Players | Game Random OSLA
Tic Tac Toe 0.96 (0.02) 1.0 (0.00)

Diamant 0.82 (0.04) | 0.85 (0.04)

2 Love Letter 0.93 (0.03) | 0.52 (0.05)
Exploding Kittens | 0.74 (0.04) | 0.77 (0.04)

Stratego 0.26 (0.05) | 0.02 (0.01)

Diamant 0.86 (0.03) | 0.75 (0.04)

4 Love Letter 0.59 (0.05) | 0.21 (0.04)

TABLE I: Results from our previous work [10]. All agents
were trained against the specific opponent they were evaluated
against. As scoring function, the Terminal (Default) reward
function was used. The win rates shown in the table are the
average win rates on the last 100 episodes during training.

generalise beyond the setting they were trained on. However, it
can serve as a comparison point to show what can be achieved
if the RL agent is trained particularly against that opponent.
In most games where the score is available, it leads to
better performance. “Diamant” is a game where you have to
take risks to gain more points, using the score as reward has
resulted in worse performance on both 2 and 4 player settings.
One challenge with self-play is that agents need to train
against the right opponent: if the opponent is too weak,
the training becomes less “interesting”, as it can just easily
beat that version. On the other hand, only using the latest
checkpoints can lead to sub-optimal policies. One example to
highlight is “Tic Tac Toe”, where training against Random and
OSLA both results in high win-rates, but those policies do not
transfer when evaluated against MCTS. Using self-play, the
agent is able to play well against any of the baselines.
Overall, using self-play we can train more robust agents
that can play against multiple opponents. Unfortunately, even
with self-play, agents are not guaranteed to converge. Many
games present cyclic strategies, hidden information and high
stochasticity in outcomes that may result in never reaching a
100% win rate. Further training and game-specific information
could significantly improve the results presented in this paper,
leaving plenty of opportunities to study TTGs in PyTAG.

VII. PYTAG OPPORTUNITIES

With the recent success of Large Language Models
(LLMs) [29] there are more and more works that take a game
environment and use such models for game playing [30], [31].
Tabletop games typically have a large amount of textual infor-
mation that was difficult to handle in the past. For instance,
the game “Dominion” has a large number of distinct cards
with lots of textual information on the cards. To play such
games the player first needs to get a good understanding of the
game state, hence it would need to learn first how to interpret
the cards. Using LLMs, these cards could be interpreted
right away without careful engineering. The flexible interfaces
provided by PyTAG allow the implementation of custom text-
based state extractors.

Another case where LLMs could be beneficial is on games
requiring interaction among players using natural language.
For instance, in “Settlers of Catan”, instead of choosing from
a list of pre-defined trade offers, these agents could propose
their own trades, including reasoning on why those would



2 players SushiGo win rate 4 players SushiGo win rate

. random

BN osla  mEE mcts

W random

BN osla  mEE mcts

win rate
win rate

200000 800000

200000

400000 600000 400000 600000 800000
steps steps

score

2 players SushiGo score 2 players SushiGo score difference

65 Em random

. osla

. mcts

N random

BN osla N mcts
60
55

50

score difference
8

45

40

35

200000 400000 600000 800000 200000 400000 600000 800000
steps steps

Fig. 10: “Sushi Go!” evaluation results. From left to right; 2 and 4-player win rates, episodic player scores and score differences
between winner and learner agents. Solid lines show training with only Terminal reward. Dashed lines use score as reward.

NP | Game Rewards Random OSLA MCTS
Tic Tac Toe Terminal 1.0 (0.02) | 1.00 (0.00) | 0.05 (0.06)
Diamant Terminal | 0.72 (0.21) | 0.99 (0.06) | 0.26 (0.18)
Diamant Score 0.56 (0.21) | 0.99 (0.05) | 0.13 (0.13)
Love Letter Terminal 0.8 (0.17) | 0.22 (0.19) | 0.17 (0.16)
Love Letter Score 0.75 (0.19) | 0.22 (0.19) | 0.16 (0.17)

2 Exp. Kittens Terminal | 0.51 (0.23) | 0.49 (0.18) | 0.31 (0.20)
Stratego Terminal 0.91 (0.12) | 0.95 (0.10) | 0.88 (0.16)
Dots and Boxes | Terminal 0.23 (0.22) 0.0 (0.00) 0.0 (0.00)
Dots and Boxes | Score 1.0 (0.00) 0.0 (0.00) 0.0 (0.00)
Sushi Go! Terminal | 0.53 (0.18) | 0.64 (0.16) 0.0 (0.00)
Sushi Go! Score 0.81 (0.11) | 0.88 (0.08) | 0.01 (0.02)
Diamant Terminal 0.5 (0.20) | 0.98 (0.05) | 0.13 (0.13)
Diamant Score 0.33 (0.19) | 0.99 (0.04) | 0.07 (0.11)
Love Letter Terminal 0.28 (0.19) | 0.03 (0.07) | 0.01 (0.04)
4 Love Letter Score 0.42 (0.20) | 0.09 (0.13) | 0.03 (0.07)
Sushi Go! Terminal | 0.27 (0.14) | 0.31 (0.15) | 0.13 (0.13)
Sushi Go! Score 0.76 (0.11) | 0.88 (0.08) | 0.05 (0.04)

TABLE II: Evaluation win rates against the baseline agents
implemented in the TAG framework. NP stands for number
of players. All agents were trained using self-play without
training against specific opponents. Win rates are averaged
across the last 20 evaluations (5 episodes for each, totalling
100 evaluations), equivalent to the last 20% of the training.

benefit other players. Some TTGs are designed to be played
by larger groups of players that involve free communication.
Social deduction games is a popular genre where players are
given a hidden role with a personalised or team-based objec-
tive. Discussion game phases are common where players can
communicate, aiming to reach common decisions and deduce
each other’s roles. Alwolf [32] is a competition that focuses on
the game Werewolf, with various tracks involving a predefined
protocol for communication or natural language, assumed to be
compatible with human players. TAG already implements the
“Resistance”, which is another popular social deduction game
that, like Alwolf, includes a phase where players discuss lines
of actions (i.e., team formation). Another recent combination
of LLMs with board games is CICERO [33], used to play the
game “Diplomacy” where players are given time to discuss
their intentions between turns in natural language.

In this work, we explored self-play to train more robust
agents, as opposed to training against specific opponents. How-
ever, this is only a stepping stone. In order to better explore
the strategic depths of TTGs, others proposed training a league
of agents with different objectives [2] or using a population of
diverging agents [34]. In section III we highlighted some of
the challenges TTGs present in general for MARL approaches.
We believe that PyTAG, along with TAG, have the generality

required to study MARL through TTGs.

In MARL, the agent’s performance is measured against
some opponent. Here, we benchmarked our trained agents
against TAG baselines. Our results show that even in this
setting, training an RL agent is difficult in most games.
“Stratego” is a challenging strategy game, where the RL agent
found a good policy against the baseline agents early on, which
is likely due to the baseline agents struggling to play well due
to the game length. These tests could be done against stronger
opponents or with increased budgets for the baseline agents
(i.e: MCTS with more budget), but then it becomes difficult
to measure how good agents are, as all the comparisons are
relative. Therefore, measuring match-making ranking such as
Trueskill [35] is a good direction for future work.

Tabletop games are often released with limited opportunity
to correct mistakes once they are produced. Al methods could
provide a tool to test such games by allowing them to find
exploits in the games which could be tracked using various
game-specific metrics, such as which cards were used when
the player won or key events that happened in the game.
In addition to testing, novel tabletop games often come with
expansions which may alter the game in a significant way by
adding new rules, or just by adding a new game board or new
cards. PyTAG may provide a new framework for generative Al
methods, to create more content for games while evaluating
them using game-playing agents.

VIII. CONCLUSION

This work presented PyTAG, a collection of games with
a Reinforcement Learning interface to interact with a large
collection of TTGs implemented in the TAG framework. In
this work, we explored the challenges and opportunities that
Tabletop games present for training RL agents. Compared to
previous works, PyTAG is the first framework to provide a
collection of various modern board games, card games and
potentially role-playing games in the future. Our aim with
PyTAG is to keep the entry barrier low for the community
to do research in the framework. All the code used in this
work is publicly available on GitHub. Setting up PPO with
self-play presented a couple of technical challenges, mainly
due to the changing turn order while maintaining high training
speeds with the vectorised environments. As future work, we
believe that adding explicit memory to the RL agents could
boost their performance on some of the games presented in our
experiments. We presented results on a set of games which we



believe characterised some of the challenges, but not all. As
future work, exploring games that require more cooperation or
mixed aspects would be a valuable extension. TAG contains
a set of fully cooperative games, such as “Hanabi” and
“Pandemic”, and more complicated strategy games such as
“Settlers of Catan”, “Battlelore and “Terraforming Mars”.

The experiments presented in this work focused on training
the PPO algorithm with self-play and evaluated against the
baseline agents implemented in the TAG framework. With
these experiments, our objective was not to develop the state-
of-the-art agent on any of the games in particular but to explore
the challenges these games present. As future work, the self-
play setting could be improved by introducing a weighted
sampling based on recency instead of using a hyperparameter
to bias the sampling towards choosing the latest checkpoint
with higher probability. As self-play may not fully capture the
strategic depth of all the games in TAG, exploring a league-
based system [2] could be an interesting direction.

In our evaluations, we used some simple baseline agents and
MCTS to evaluate against, but the latter did not use any of
the extensions that were proposed to improve performance for
tabletop games. As future work with stronger RL agents, the
evaluations could be also improved by using stronger baselines
tuned specifically for the games. Looking at the win rates
and scores in these multi-player games alone do not give
enough insight to understand the RL agent’s capabilities, as
all the results are relative to the opponents’ skill. As future
work, more game-specific metrics could be used to measure
the agent’s skill level. Additionally, a match-making ranking,
such as TrueSkill [35] could be calculated to make better
comparisons among agents.
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