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Abstract—In recent years, Game AI research has made impor-
tant breakthroughs using Reinforcement Learning (RL). Despite
this, RL for modern tabletop games has gained little to no
attention, even when they offer a range of unique challenges
compared to video games. To bridge this gap, we introduce
PyTAG, a Python API for interacting with the Tabletop Games
framework (TAG). TAG contains a growing set of more than
20 modern tabletop games, with a common API for AI agents.
We present techniques for training RL agents in these games
and introduce baseline results after training Proximal Policy
Optimisation algorithms on a subset of games. Finally, we discuss
the unique challenges complex modern tabletop games provide,
now open to RL research through PyTAG.

Index Terms—Reinforcement Learning, Game AI, Tabletop
games, board games, benchmark, framework

I. INTRODUCTION

In recent years, Reinforcement Learning (RL) has made
various breakthroughs for playing board games like Go [1]
or Chess [2], as well as video games like “Starcraft” [3]. By
repeatedly playing games millions of times, these algorithms
are able to learn powerful complex strategies and solutions
to various problems, in single-player or adversarial settings,
which rival or even exceed the abilities of champion human
players. However, most RL applications focus on video games,
classical board or card games, as opposed to modern Tabletop
Games (TTGs). This is due to the fact that, although there
are some implementations of TTGs, no framework provides a
unified API for playing a wide range of modern TTGs using
RL, facilitating wide adoption of research on these games.

In contrast to classical board games, modern TTGs like
“Settlers of Catan” or “Pandemic” are typically played with
more than 2 players, which raises the problem of multi-agent
dynamics: how can one’s strategy be optimised according
to the behaviour of multiple other intelligent entities acting
upon the same environment? In most TTGs, players are com-
peting against each other; however, others are collaborative
(e.g. “Pandemic”), where players have to work together and
coordinate their actions to defeat either the game or another
group of players. Modern TTGs also include aspects of high
uncertainty, hidden information, and very large, diverse and
complex state and action spaces. Modern TTGs present a wide
variety of challenges and a benchmark for RL to be explored.

The Tabletop Games framework (TAG) implements a large
set of modern TTGs with a common interface for AI agents.

TAG is implemented in Java, which allows running games with
fast Forward Models; this is essential for Statistical Forward
Planning (SFP) agents, which run in real-time and use the
Forward Models to generate simulations of possible futures, in
order to build statistics describing best strategies. SFP methods
are fast to run, without any training required, and are able to
produce good performance in a wide variety of games, with
limited or zero expert knowledge. However, these methods
heavily rely on the existence of a Forward Model (which
may not be available for many real-world problems), and can
struggle to reach optimum play due to the constraints of fast
decision-making in real-time.

The integration of RL agents into TAG balances out these
drawbacks, allowing for more complex strategic behaviours to
be learned, amplifying the usefulness of TAG as a framework
for not only developing high-performing AI players, but also
for the study and improvement of the design of modern TTGs.
So far, running RL agents in TAG has been challenging due
to the lack of libraries required for implementing efficient RL
agents in Java. Further, as TAG development was focused on
SFP agents playing games, TAG is highly tailored to the needs
of these algorithms. Therefore, several modifications to the
framework are needed to allow the addition of RL agents.

This work introduces PyTAG, a Python interface for inter-
action with TAG [4]. The communication between TAG and
PyTAG is done by sharing the memory locations between
Java and Python, which keeps the games running fast and
efficiently. Further, this paper explores the challenges that arise
when applying RL agents to modern TTGs through PyTAG,
and proposes solutions and guidance for future research. The
focus of this paper is not to outperform the existing SFP agents
in TAG, but rather to take steps towards tackling the challenges
that modern TTGs raise for training RL agents, in order to
further diversify the library of AI players available in TAG for
the in-depth analysis of modern TTGs. All our code (baseline
agents, wrappers, python interface) is available on Github1.

II. BACKGROUND

A. Tabletop Games framework

The Tabletop Games framework (TAG) [4] is designed for
research on modern TTGs. It provides a common API for
SFP agents, various tools for automatic game optimisation, and
metrics for evaluating both agents and games. To this extent,

1https://github.com/martinballa/PyTAG979-8-3503-2277-4/23/$31.00 ©2023 IEEE



TAG provides a set of components, templates and interfaces to
quickly implement new games, and a standard API for creating
AI agents to play them. At the time of writing, TAG includes
a collection of over 20 modern TTGs, including “Settlers of
Catan”, “Pandemic” [5], and “Terraforming Mars” [6]. All
agents have access to the Forward Model of the game, which
can be used to simulate potential future states in the game,
when provided with a previous game state and action. Several
general-purpose SFP agents are implemented in TAG, such as
Monte Carlo Tree Search (MCTS [7]) and Rolling Horizon
Evolutionary Algorithm (RHEA [8]).

B. Reinforcement Learning

Reinforcement Learning (RL) is an area of machine learn-
ing which focuses on learning a policy to solve sequential
decision-making problems. The combination of RL with Deep
Neural Networks has achieved superhuman performance on a
range of domains [1] [3], but most works focused on either
video games (Atari, “Starcraft”) or classical board games
(Chess, Go). Modern board games share many similarities with
video games, but they are relatively unexplored with RL due
to the lack of research-friendly software implementations.

Formally, RL is defined as a Markov Decision Process
where at each time step t, the agent receives a state st
from the state space S. In each state, the agent executes an
action at from the action space A(st) following its policy
π(at|st). After executing at, the state transitions to the next
state st+1, according to the dynamics of the environment
P(st+1|st, at). The agent receives a scalar reward rt from
the function R(st, at), representing the objective of the envi-
ronment. The agent aims to maximise the return (cumulative
rewards) Rt =

∑∞
k=0 γ

krt+k, where γ is the discount factor
weighting long-term future rewards.

Model-free RL algorithms are typically classified according
to whether they represent a policy based on a value func-
tion (Q-values), or directly (policy gradients). Policy gradient
methods are better suited to deal with large action spaces
that TTGs provide. Actor-critic algorithms are an extension
to policy gradient algorithms, as they represent a policy
πθ(st|at) and a value function Qω(st, at) separately. The
policy’s parameters θ are trained to maximise the return, while
the critic is trained to predict the expected return under the
learned policy. Actor-critic methods use the critic to stabilise
learning. Proximal Policy Optimisation (PPO) [9] is one of the
most popular actor-critic algorithms, due to its simplicity and
high performance across various benchmarks.

III. RELATED WORK

A. AI and Board Games

Games are one of the most prolific benchmarks for testing
progress in AI research. In particular, board and card games
have been used often as testbeds for new algorithms. A
large amount of research on Game AI has focused on video-
games [10] and classic board games, such as chess [2], go [1]
and poker [11]. TTGs are considerably richer domains, com-
pared to classic board games, where players need to manage

hidden information, boards, cards, resources and stochasticity.
Games can be competitive, cooperative or usually a mixture
of these, with coalitions of players forming and changing over
the course of a game [12]. Creating AI players for TTGs is
challenging: AI agents must have the ability to cooperate or
compete, making strategic and tactical decisions in unclear
situations where crucial information is missing.

Early work on TTGs used MCTS agents to deal with multi-
player and non-deterministic games such as “Settlers of Catan”
[13] or “Magic: The Gathering” [14]. MCTS was also used in
“Risk” [15] to aid the drafting of game territories by players
at the start of the game, or in “The Resistance” [16] to create
agents able to bluff effectively. Some research has focused on
identifying strategies to play better games such as “Ticket to
Ride” [17] or “One Night Ultimate Werewolf” [18].

Research in the card game “Hanabi”, which focuses on
creating collaborative agents, has been coined as the “new
frontier for AI research” [19] for Human-AI cooperation. The
Hanabi Learning Environment implements an RL API for this
game, which is particularly interesting for RL research due to
its cooperative, multi-agent and imperfect information nature.
Players must act as a team and provide hints to each other
to avoid making errors. Existing techniques like self-play are
problematic for this kind of game, as players need to adapt to
their team and cannot assume that each player plays optimally
or follows the same strategy.

Other recent and remarkable works have been achieved
in the domain of TTGs. For instance, Player of Games,
a general-purpose algorithm that combines guided search,
self-play learning, and game-theoretic reasoning, achieved
strong empirical performance in the imperfect information
game “Scotland Yard” [20]. We further highlight the recent
work by Meta which achieved human-level play for the TTG
“Diplomacy”, showing the capacity of large language models
and self-play algorithms [21].

B. Multi-game AI Frameworks

However, a large proportion of traditional and current
Game AI research, including many of the works mentioned
above, use different algorithms and software frameworks. This
generally makes comparing results and transferring knowl-
edge between games difficult and time-consuming. For this
reason, multiple benchmarks have been proposed in the last
decade, aiming to provide a common API for AI agents,
so new algorithms can be tested in several games at once.
Popular video-game frameworks that follow this philosophy
are the Arcade Learning Environment (ALE; [10]) and the
General Video Game AI Framework (GVGAI; [22] for simple
two-dimensional arcade games. Recently, Griddly [23] and
Stratega [24] provide a common API for creating general AI
players for multiple real-time and turn-based strategy games.

In the domain of TTGs, RLCard is a framework for
evaluating RL and search algorithms in card games, such
as Blackjack or UNO [25]. OpenSpiel [26] provides a wide
range of games and algorithms for research in RL and Search
algorithms in single- and multi-agent games, including a wide



range of classical board games like “Connect 4” and Tic
Tac Toe. Finally, Ludii [27] is a framework and language for
defining and playing a wide range of games, including board
games. Ludii has been applied for general game playing and
generating new games, and it also supports an API for RL
algorithms. While these are useful and interesting frameworks
for AI research, none of them have the capacity to implement
complex and rich TTGs.

Three aspects motivate the work described in this paper: the
increasing popularity of TTGs as benchmarks for Game AI
research, the current successes of (Deep) RL in the field, and
the lack of a framework that provides a common interface for
creating RL agents that play multiple TTGs through a common
interface.

IV. PYTAG

PyTAG is a python interface for interacting with the TAG
framework, with the primary purpose of supporting RL agents
on the collection of games TAG provides. As RL agents
require a large amount of experience, slow environments are
unsuitable for large-scale experiments. TAG has already shown
high running speeds [4], but Java has little support for libraries
that allow efficient implementation of RL agents, which leads
to the requirement to implement a python API. So far, im-
plementing new agents was only available in Java. However,
with PyTAG, researchers can implement new agents in Python
as well, which lowers the entry barrier for using TAG for
RL research. PyTAG was developed following the philosophy
of keeping the python interface customisable, including its
potential use for non-RL purposes. The communication be-
tween the programming languages is done by sharing memory
locations of objects between Java and Python. As a result,
the communication of observations and actions remains fast,
which is required to train RL agents.

One challenge that comes with tabletop games, compared
to other multi-game frameworks, is that all games are unique
in terms of observation spaces, action spaces and rewards,
making the implementation of a general interface for RL
challenging. We have selected a few games that present an
assorted set of challenges for this work and extended them
with interfaces to PyTAG. PyTAG supports OpenAI’s gym [28]
interface, which allows using common wrappers to run mul-
tiple environments in parallel for training, and to modify the
observation spaces, action spaces and reward functions.

A. Observations

The first PyTAG interface converts the information extracted
from a game state, to a fixed format that can be used as input
to a neural network. Two options are possible: from the Java
side, we return either a vectorised observation of the state, or
a JSON object. The former is the simpler and faster approach,
but it is limiting for games with complicated observation
spaces such as “Settlers of Catan” or “Terraforming Mars”.
Working with JSON objects allows more flexibility and control
over what is given to the Python agent for action selection,
but the extra conversions may slow down training.

B. Actions

The second PyTAG interface deals with how actions are
used by the agent. By default, TAG computes legal actions
in a game state, which is sufficient for SFP agents to make
decisions. Unfortunately, RL agents typically expect a fixed
action space, with known dimensions at initialisation. The
action spaces in tabletop games are rarely enumerable: they are
dynamic and highly dependent on the game state. To generate a
fixed action space, we implemented action trees for all games
in our experiments, similar to the work by [29]. Each leaf node
in the action tree represents an action, and the intermediate
nodes represent action categories.

The shape of the action tree is fixed when the game is
initialised, but the available actions in the tree are updated
at each step. The action tree can be used to determine which
actions are legal in the current state, which we refer to as
the action mask. The action mask is a boolean vector with
the same size as the number of possible actions in the game.
This can be used to filter predicted Q-values or policy logits
before action selection. For Q-values, the unavailable actions
are replaced by a small value (i.e. 1e−8), so, at action selection,
argmaxaQ(s, a) will not pick them. In the case of policy
gradients, the masking is done on the predicted policy logits:
the unavailable units are replaced by a small negative value,
so, when the action probabilities are calculated, those actions
produce p = 0.0 and are not chosen.

A limitation to our experiments is the lack of direct use
of the action tree structures, due to the complexities of using
irregularly shaped trees. Deep Learning libraries are designed
to speed up computation on regular-sized tensors only. Some
of the games do satisfy this requirement: Tic Tac Toe and
“Stratego” both have regularly shaped action trees, but the
other games do not. We hypothesise that action trees could be
used to better handle the action spaces with specialised Neural
Network architectures, or by using regressive action selection.

V. EXPERIMENTS

This section presents baseline experiments using PPO on a
subset of TAG games. Our main aim is to demonstrate the use
of PyTAG, and propose solutions to the challenges of complex
observation and action spaces.

A. Experimental setup

TAG includes several AI players that were used as op-
ponents for training the RL agents. We employed Random
and One-step look-ahead (OSLA). Random picks an action
from all available with uniform probability, while OSLA tries
all available actions, using the Forward Model, to determine
the best next action, with a look-ahead of one move. RHEA
and MCTS agents were not used for training, due to the
considerable overhead required for each decision.

Due to challenging action spaces and action masking,
actor-critic RL algorithms are better suited to develop our
baseline agent. We have adapted the PPO algorithm [9] from
CleanRL [30]. As most games have hidden information, we
have adapted a version of PPO with a Long Short Term



Fig. 1. 2-player results in “Diamant”, “ExplodingKittens”, “LoveLetter” and Tic Tac Toe (from left to right). Graphs show the running mean of episodic
win-rates, averaged across all seeds. Shaded areas show the standard error.

Fig. 2. 4-player results in “Diamant”, “ExplodingKittens” and “LoveLetter” (from left to right), showing the running mean win-rates across training.

Fig. 3. “Stratego” results showing the running mean win-rate (left), episode lengths (middle) and rewards (right).

Memory (LSTM; [31]) network as the second baseline, to
add memory for decision-making. To handle the observations
received from TAG, we modified the Neural Network (NN)
architecture for compatibility with the observation vectors per
game. The NNs have 2 fully connected layers and 2 heads to
output the action logits and the values for all games with vector
observations. For training, we used the default parameters from
CleanRL. For “Stratego”, we used an extra convolutional layer
to extract spatial information from the board.

All agents were trained for 1 million time steps across 4
seeds on a machine with 8 CPU cores and 1 GPU (2080
TI). For all games, we used 8 parallel instances of TAG with
synchronous steps, employing OpenAI gym’s vectorised envi-
ronment wrapper. As the reward function, we used win/loss
signals for all games: +1 for winning the game, 0 for a
tie and −1 for losing the game. Most of the games are
fairly short, with episode lengths of less than 40 steps on
average (just counting our agents’ decisions). Only “Stratego”
has longer episodes, with 600 − 700 steps on average, while

TAG’s implementation declares a draw after 400 steps. Our
experiments were done on 2- and 4-player versions of the
selected games. When training on 2-player games, we used 1
PPO vs 1 baseline agent. In 4-player games, we used 1 PPO vs
3 instances of the selected baseline agent. For all games, we
measure rewards, win rates, length of episodes, and Frames
Per Second (FPS; which measures the rate of the interactions
of the agent, including processing observations, optimising the
agent, and waiting for the opponents to act). For the number
of steps, only the times when PPO acts are counted.

B. Tic Tac Toe

Game: Tic Tac Toe is the simplest game in TAG. The game
is played on a 3× 3 grid board with the players alternatively
filling in the cells with their symbols (either X or O). The
game ends when one of the players wins by getting 3 matching
symbols in either a horizontal, vertical or diagonal line; or
when the whole board is filled, resulting in a draw.
Observation and Action spaces: In our experiments, the
observation space was a 9-dimensional vector representing



TABLE I
RESULTS SUMMARY SHOWING MEAN AND STANDARD ERROR WHEN TRAINING PPO (WITHOUT LSTM). WINS, RETURNS AND EPISODE LENGTHS ARE

CALCULATED IN THE LAST 100 EPISODES, WHILE THE FRAMES PER SECOND (FPS) IS CALCULATED THROUGHOUT TRAINING (INCLUDING OPTIMISING
PPO AND WAITING FOR THE OPPONENTS TO ACT).

Opponent Number of Players Game Wins Returns Episode Lengths Mean FPS
Random 2 Tic Tac Toe 0.96 (0.02) 0.94 (0.03) 3.19 (0.04) 754.52 (0.79)
Random 2 Diamant 0.82 (0.04) 0.65 (0.08) 18.22 (0.31) 1950.20 (9.35)
Random 2 LoveLetter 0.93 (0.03) 0.86 (0.05) 22.72 (0.49) 1880.61 (2.70)
Random 2 ExplodingKittens 0.74 (0.04) 0.48 (0.09) 32.70 (0.98) 1777.53 (3.79)
Random 2 Stratego 0.26 (0.05) 0.24 (0.05) 330.91 (13.33) 184.20 (0.60)
Random 4 Diamant 0.86 (0.03) 0.72 (0.07) 22.09 (0.33) 1431.56 (13.96)
Random 4 LoveLetter 0.59 (0.05) 0.18 (0.10) 20.91 (0.47) 1455.32 (1.28)
Random 4 ExplodingKittens 0.35 (0.05) -0.30 (0.10) 21.10 (0.85) 1731.85 (1.85)
OSLA 2 Tic Tac Toe 1.00 (0.00) 1.00 (0.00) 3.00 (0.00) 703.99 (0.52)
OSLA 2 Diamant 0.85 (0.04) 0.70 (0.07) 18.55 (0.28) 1931.23 (6.56)
OSLA 2 LoveLetter 0.52 (0.05) 0.04 (0.10) 25.14 (0.67) 1466.61 (1.89)
OSLA 2 ExplodingKittens 0.77 (0.04) 0.54 (0.08) 34.15 (1.03) 1758.99 (3.36)
OSLA 2 Stratego 0.02 (0.01) -0.01 (0.02) 390.07 (5.27) 24.57 (0.11)
OSLA 4 Diamant 0.75 (0.04) 0.51 (0.09) 21.58 (0.33) 1212.58 (9.69)
OSLA 4 LoveLetter 0.21 (0.04) -0.58 (0.08) 20.92 (0.56) 731.94 (0.59)
OSLA 4 ExplodingKittens 0.22 (0.04) -0.56 (0.08) 21.10 (0.91) 1226.90 (1.15)

the flattened board. The action space is a 9-dimensional
vector corresponding to placing the player’s symbol in the
corresponding cells. The action mask filters the occupied cells
from the action space.
Results: Figure 1 (right) shows the running mean win-rates
against the baseline agent. Against Random, PPO reaches a
win rate over 90%, with occasional ties. Against OSLA, PPO
is able to learn a strategy that leads to winning all games.

C. Diamant

Game: “Diamant” is a push your luck game for 2 to 5 players.
Players explore caves, placing tiles with treasures or traps,
and at each turn they may decide to continue exploring, or
return to camp. If they return to camp, they can keep their
gained treasures. If they keep exploring, they may gain further
treasures; however, they may discover a trap instead, which
causes every player still in the cave to lose all progress and
return to the camp empty-handed.
Observation and Action spaces: The observation space is a
vector representing the tile counters, the number of gems on
the current tile, and the number of gems banked in the cave.
The action space is a 3-dimensional flat vector. In addition
to staying in the cave or returning to camp, we provide a
dummy action for the case when the player is at the camp,
which allows to observe how the other players are doing.
Results: The left plots in figures 1 and 2 show the win rates
in 2- and 4-player Diamant. PPO achieves high winning rates
with a very similar performance against Random and OSLA.
As Diamant is a push-your-luck game, and there are only 2
actions when the agent is in the cave, both Random and OSLA
tend to return to the cave prematurely, allowing PPO to collect
the higher rewards and win the game. Occasionally, PPO goes
too far into the cave, gets trapped and loses the game.

D. Exploding Kittens

Game: “Exploding Kittens” is a card game for 2 to 5 players.
At each turn, players may play any number of cards from their

hand, but they need to finish their turns by drawing a card.
If the players draw an Exploding Kitten card, they lose the
game, unless they have a defensive card in their hand. The
deck contains n − 1 Exploding Kitten cards, where n is the
number of players. Exploding Kittens feature reactive turn-
orders; some cards may be used at any time (e.g. a Nope card
may be used to cancel the effect of a card played by another
player); and some cards allow the player to take cards from
other players (e.g. Favor). These features make this game a
challenge for RL algorithms.
Observation and Action spaces: The observation space for
Exploding Kittens contain the card type counters for each card
in the player’s hand, the number of cards the opponents have
in hand, the number of cards left in the draw pile and the game
phase. Game phases define whether the player has a normal
turn, or if it has to react to some other event, such as a Favor,
Nope or Defuse card. The action space is constructed as an
action tree, but in our experiments only the flattened tree is
used for action selection. This space includes ending the turn
by drawing a card, playing any of the card types in hand,
and all the reaction actions: picking a card type to return as a
Favor, using a Nope card, or deciding where in the draw pile
to put the exploding kitten drawn, if a Defuse card is used.
Results: The second graphs in Figures 1 and 2 show the
win-rates in Exploding Kittens. In the 2-player setting, both
versions of PPO have a good win-rate of 75%. Interestingly,
in the 4-player setting, PPO’s performance drops to 35% and
22% against Random and OSLA, respectively. The significant
drop in performance highlights the challenge of multi-agent
dynamics as the number of players increases.

E. Love Letter

Game: “Love Letter” is a 2- to 4-player card game, with the
objective of gaining favour tokens by either being the last
player left in the game, or having the highest numerical value
card at the end of each round. It was chosen both due to its



abundance of hidden information and the need of memory in
tracking which player has which card.
Observation and Action spaces: For the observation space,
a number of features are included: the player’s current hand
(hot-encoded with 1 bit for each card type), the number of each
card type in the discard pile, and how many favour tokens each
player has. There are 68 actions in the action space, with 8
base actions (1 per card type). The action space grows due to
the combinatorial choices some cards have, such as the Guard,
who must guess the card type of one of the opponents.
Results: The third graphs in Figures 1 and 2 show the win-
rates in “Love Letter”. In “Love Letter”, the difference in
difficulty between Random and OSLA is more evident than
in the other games. Against Random, PPO has a win rate
of 93% and 59% on 2- and 4-player versions, respectively.
Against OSLA, the performance drops significantly, resulting
in a 52% win-rate with 2 players and 21% with 4 players.

F. Stratego

Game: “Stratego” is a 2-player game played on a 10×10 grid
map. A player wins by either capturing their opponent’s flag,
or if their opponent is unable to perform any actions. The game
features hidden information: the type of each unit is initially
known only by the player that owns it, only becoming public
information if it is involved in combat.
Observation and Action spaces: The observation space is
an encoding of the 10 × 10 grid board, with hot-encoded
unit types. 27 feature maps each represent a separate player-
exclusive unit type. The action space for “Stratego” is sub-
stantially larger than the other games implemented, reaching
a maximum of 4400 actions available for the agent. This
large action space is due to each player having 40 units, as
well as the scout unit’s ability to travel to any non-diagonal
unoccupied grid on the board.
Results: Figure 3 (left) presents the training results on “Strat-
ego”. The “Stratego” implementation in TAG declares a draw
if a game is unfinished within 800 steps (400 per agent).
Without this restriction some episodes may last over 2000
steps without reaching the end. The plots of the games’ lengths
(Figure 3, center) and rewards (right) show that most games
ended in a tie, with episode lengths around 400 steps, while the
rewards remain close to 0. Against Random, PPO shows quick
improvements over time, with clear indications of learning a
good policy. In contrast, OSLA is skilled at avoiding a loss,
making games often end in a tie, without PPO showing high
rewards throughout training. “Stratego” is challenging to learn
due to the long episode lengths and sparse rewards, and it’s
possible that longer training times would improve learning.

VI. CHALLENGES AND OPPORTUNITIES

This section describes the challenges that Modern TTGs
present to RL agents, and the opportunities PyTAG brings.

A. Observation Space

1) Representation: Most RL benchmarks focus on having
simple structured observations, either working with a set of

scalar values, or using images. TTGs, however, use various
components (e.g. cards, dice, boards) to provide information
to players. The number and properties of these components
vary widely from game to game, and thus make representing
the observation space much more challenging. For example:

• Cards can represent resources (“Settlers of Catan”), or
actions the player can perform (“Exploding Kittens”).
Some games, such as “Dominion” and “Terraforming
Mars”, have large amounts of unique cards, which may
feature complex descriptions of rules in natural language.

• Boards may take arbitrary shapes without any restric-
tions, including regular grids (chess, go), graphs (“Pan-
demic”), or hexagonal grids (“Settlers of Catan”). While
some boards are fixed, others get built from reusable tiles
(“Descent”, “Gloomhaven”, “Carcassonne”).

In the Java interface of TAG, these are represented as ob-
jects, accessible to the AI agents directly. However, RL agents
require fixed and specially-tailored observation spaces, easily
translated from Java to Python. PyTAG brings the creation
of game-specific wrappers for compatibility with RL agents
on multiple games of varying complexity, which preserves all
spatial and relational information in the data. We therefore
open up the opportunity of research into efficiently exploring
complex game spaces, via the observations from the large
collection of existing games in TAG, now exposed to Python.

2) Partial Observability: Importantly, many TTGs include
hidden information to either some players only (e.g. the
player’s own hand of cards is only visible to themselves) or to
all players (e.g. a face-down deck of cards). Partial observabil-
ity may apply to a whole component or set of components,
but also to only a part of a component (e.g. in “Stratego”,
the player observes the opponent’s pieces positions, but not
their value). This raises the challenge for AI players to learn
complete models of the world, in order to make accurate
decisions with regards to the missing information.

We tested LSTMs as an approach for tackling this challenge.
However, our results do not indicate an improvement in
performance for the RL agents in any of the games used as
testbeds. This could be due to more efficient training needed
to allow the agent to learn how to use the temporal informa-
tion, or the observations may contain enough information to
play well enough against the baseline agents, without extra
enhancements required.

Generally, training against SFP agents adds an important
overhead, especially if having multiple instances of SFP agents
in the same training setup. The multi-processed environments
are efficient to speed up the running time of experiments, but
the action selection for the SFP agent is not parallelised. We
propose the opportunity of using a pool of SFP opponents
in the training, which get progressively more challenging.
This is hypothesised to lead to more efficient RL training,
especially in the beginning, as the RL agent would get the
chance to observe winning game states, as opposed to always
losing against strong opponents. This can be seen as a form
of curriculum learning [32].



We further open up the opportunity to explore more in-
depth the effect of adding memory to RL agents in games with
complex structures of hidden information, as well as more
complex training setups against proficient opponents. While
the aim of this paper is to show the feasibility of a single RL
approach across a set of games with very different action and
observation spaces, PyTAG offers complex environments for
the study of other RL methodologies, such as ’self-play’ [33].

3) Stochasticity: TTGs provide a large source of stochastic-
ity in various forms. Games typically have randomly-shuffled
decks of cards, dice, random board generative processes, or
player choices during setup, usually for replayability purposes.
This results in each game played starting from a unique point
in the game state space. Such actions are often repeated
throughout the game, leading to very different gameplay expe-
riences. Consequently, RL agents using TTGplay data require
high efficiency for training, due to the very low probability of
observing the same game state repeatedly. PyTAG can serve
as a benchmark for generalisation, as AI agents try to learn
handling efficiently large, varied and dynamic state spaces.

B. Action Spaces

1) Size and Structure: Reinforcement Learning agents typ-
ically need to know the number of all possible actions in a
game, in any game state, before learning begins, with these
often architecturally encoded as one output neuron per possible
action. Most TTGs, however, feature dynamic action spaces
that are highly dependent on the current game state. For
example, in “Settlers of Catan”, the actions available when
trading with other players are from a completely different
subsection of the action space than those available when
deciding what structures to build on the map. Further, the
number of possible actions in some states may reach millions
in TAG, due to the combinatorial possibilities of some actions
and the very large and complex action and state spaces. TAG
dynamically computes which actions are available in each
state. While this is sufficient for SFP agents, it is unsuitable for
RL agents, due to their requirement for a fixed action space.

In PyTAG, we adopt a similar methodology to [29], by
building structured action trees of the complete action space,
allowing for full specification of action types and properties.
Further, we apply action masking in order to filter out illegal
actions depending on the given game state. TTGs in TAG
do feature highly dynamic action spaces, with many different
types of actions, all with different properties, much different
to other environments readily available for RL: for example,
video games are restricted to the mapping of keys on an input
controller to in-game actions, which TTGS do not abide to. We
therefore suggest a research direction for handling complex
action spaces efficiently, most similar to the dynamic and
varied nature of real-life interactions and problems.

C. Rewards

Another challenge comes from choosing the right reward
function to use. Recent work in TAG has investigated the
impact that changing the target objective (reward) function

has in games in the TAG framework [34]. Using the simple
win/loss reward works well in shorter games, but some games
may take thousands of decisions until a terminal state is
reached. In these cases, it is generally advantageous to use
a combination of the game score and game win/loss signals.
While win condition and scoring of modern TTGs differ across
games, a majority of games in the genre feature ongoing game
scores, with the highest score at the game end determining the
winner. This score can therefore provide a useful proxy for a
player’s progress towards winning (or losing) a game.

The winning condition in some games is tied to cer-
tain events, such as reaching the highest score (“Diamant”),
reaching a target score (“Settlers of Catan”), destroying the
opponent’s units (“Stratego”), or outliving your opponents
(“Exploding Kittens”). TAG allows defining game-specific
heuristic functions, in addition to a game’s natural scoring,
to help SFP agents more easily find and explore the most
promising areas of the search space. These heuristics are
built with expert knowledge and include heavy biases that
limit the play-styles exhibited by the AI agents as a result.
Automatically defining appropriate and generally applicable
reward functions, which allow the AI agent to learn how to
play a game efficiently outside of the bounds of human limits
and expertise, remains an open challenge.

Further, an issue that arises often is credit assignment, es-
pecially in cooperative games like “Pandemic”: if players end
up in a game state that brings them closer to winning, which
of their actions should be credited with the reward signal?
When facing large, complex, dynamic and stochastic TTGs,
it is crucial to identify which move made was particularly
successful (or detrimental) in the course of the game. As such,
PyTAG allows for in-depth research into the credit assignment
problem across various environments of varying complexity.

D. Multi-Agent Dynamics

TTGs typically focus on the interaction of two or more
players. The games implemented in TAG range from 2 players
to more than 10 (e.g. Poker, “UNO”). Most games are compet-
itive, but some games, such as “Pandemic”, are collaborative
and require the agents to work together in order to win the
game (all players win or lose together). The presence of
multiple intelligent entities acting upon the same environment
adds extra noise to an agent’s learning and decision-making
process. PyTAG, therefore, offers the opportunity of studying
RL applications in complex multi-agent domains, where they
must learn how to react and adapt to other agents’ play-styles,
either competing or cooperating to achieve victory.

E. PyTAG for Education

PyTAG aims to open up TAG to more researchers, by
offering language alternatives and wrappers for common in-
terfaces such as OpenAI’s gym. This allows new researchers
to easily test existing algorithms within the large collection
of TTGs in TAG, as well as easily create a variety of agents
to be used for better playtesting and balancing TTGs. The
number of games implemented in TAG is quickly growing,



with multiple games actively being implemented, which serves
as an ever increasing platform for RL research, raising multiple
challenges unique to the domain of TTGs. Last but not
least, we highlight PyTAG as a more accessible pathway into
the study of tabletop games. This is highly beneficial for
educational environments, as the learning curve for python
is lower than Java for beginner programmers. Many PhD,
masters and undergraduate students are already using TAG for
their university projects across several institutions, including
Queen Mary University of London (UK), Malmo University
(Sweden) and Leiden University (The Netherlands). PyTAG
will increase the accessibility of the framework and serve as
an introduction to the study of AI in complex TTGs.

VII. CONCLUSIONS

This paper presents PyTAG: a python interface for the
Tabletop Games framework (TAG). The paper demonstrates
the use of the bridge between TAG and PyTAG by testing
Reinforcement Learning agents in several games of varying
complexity, from Tic Tac Toe to “Exploding Kittens” and
“Stratego”. We trained a Proximal Policy Optimisation algo-
rithm with and without Long-Short Term Memory on several
games, in 2 and 4 player settings. Our results showed good
learning progress against the baseline agents in the framework.

PyTAG was designed with flexibility in mind: the interface
can not only be used for RL, but it also allows manipulating
variables and executing functions directly on the Java side. To
access a new game from TAG in Python, the user would simply
need to implement two interfaces in Java for handling the
observation and the action spaces, while following the given
guidance on the Python APIs.

Additionally, the paper looks into some of the challenges
Tabletop Games present for Reinforcement Learning research,
and discusses many opportunities that this work opens up for
in-depth studies of RL agents on complex TTGs, with direct
benefits to the education sector, as well as to the improvement
TTG play-testing and balancing processes.
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