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Abstract—Large Language Models (LLMs) have shown great
success as high-level planners for zero-shot game-playing agents.
However, these agents are primarily evaluated on games where
long-term planning is relatively straightforward. In contrast,
agents tested in more dynamic environments face limitations due
to simplistic environments with only a few objects and interactions.
To fill this gap in the literature, we present NetPlay, the first LLM-
powered zero-shot agent for the challenging roguelike NetHack.
NetHack is a particularly challenging environment due to its
diverse set of items and monsters, complex interactions, and
many ways to die.

NetPlay uses an architecture designed for dynamic robot
environments, modified for NetHack. Like previous approaches,
it prompts the LLM to choose from predefined skills and tracks
past interactions to enhance decision-making. Given NetHack’s
unpredictable nature, NetPlay detects important game events
to interrupt running skills, enabling it to react to unforeseen
circumstances. While NetPlay demonstrates considerable flexibility
and proficiency in interacting with NetHack’s mechanics, it
struggles with ambiguous task descriptions and a lack of explicit
feedback. Our findings demonstrate that NetPlay performs best
with detailed context information, indicating the necessity for
dynamic methods in supplying context information for complex
games such as NetHack.

Index Terms—NetHack, Large Language Models, Zero-Shot
Agent.

I. INTRODUCTION

Recently, agents based on Large Language Models (LLMs)
[1] have been successfully applied to robot environments [2],
[3] and Minecraft [4]–[6], among others. These agents do not
require pre-training and typically involve prompting an LLM
to solve tasks by choosing from predefined skills.

LLM agents utilizing predefined skills are particularly
promising for game development as developing a set of skills
is often more feasible than designing an entire agent. However,
existing studies predominantly focus on the capabilities of
LLMs for game-playing, neglecting to address their limitations.
Evaluations typically focus on predictable tasks, like finding a
diamond in Minecraft, which can consistently be achieved
through strip mining. Many games require more dynamic
decision-making, where long-term planning is challenging,
and the correct course of action is more ambiguous. While
evaluations have been done on more dynamic environments,

these environments often contain only a handful of objects and
lack complex interactions.

We build upon existing literature by evaluating an LLM agent
in the context of the complex and unpredictable roguelike
NetHack [7]. NetHack is a challenging game with many
monsters, items, interactions, partial observability, and an
intricate goal condition. The sheer size of NetHack, paired
with the many sub-systems the player has to understand, make
it an excellent candidate for evaluating the limitations of LLM
agents. NetHack’s description files also allow us to define
levels, enabling us to evaluate the agent’s abilities in isolation.

In the following, we present NetPlay, a LLM powered
agent designed to tackle a wide range of tasks in NetHack.
NetPlay is inspired by autoascend [8] a handcrafted
agent that won the NetHack Challenge 2021 [9]. While
autoascend relied on a large network of handcrafted rules
to handle the complexity of NetHack, NetPlay only requires
a set of isolated skills. Our experiments show that NetPlay
can interact with most of NetHack’s game mechanics and that
it excels in following detailed instructions. Additionally, the
agent exhibits creative behavior when focusing its attention
on a specific problem. However, when tasked to play au-
tonomously, NetPlay is far outperformed by autoascend.
Consequently, this paper delves into reasons for this, such as the
agent’s struggles to handle ambiguous instructions, confusing
observations, and a lack of explicit feedback.

We begin in section II with an overview of NetHack and a
review of existing work on LLM-powered agents. Section III
discusses the architecture of NetPlay, including many of the
design decisions we had to make due to limitations caused by
the LLM. In section IV, we first evaluate NetPlay’s ability
to autonomously play the game and compare its performance
with a simple handcrafted agent and autoascend. We follow
this up with an in-depth analysis of the agent’s behavior
across various isolated scenarios. Subsequently, we analyze
the experiment results in section V and conclude this study in
section VI. The source code can be found on GitHub1.

II. BACKGROUND

A. NetHack

NetHack [7], released in 1987, is an extremely challenging
turn-based roguelike that continues to receive updates to this

1https://github.com/CommanderCero/NetPlay979-8-3503-5067-8/24/$31.00 ©2024 IEEE
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Fig. 1: The terminal view of the game NetHack. The left image presents an annotated view of the in-game screen, featuring the
game’s map, an example of a game message, and the agent’s stats. The right image showcases a menu for picking up items
from a tile containing multiple objects. Image source: alt.org/nethack

date. The objective is to traverse 50 procedurally generated
levels, retrieving the Amulet of Yendor and successfully
returning to the surface. Doing so unlocks the final challenge
of the game: the four elemental planes, followed by the astral
plane, where players must present the Amulet to their deity.
See fig. 1 for a screenshot of the game.

Most aspects of the game are generated, such as level
layouts, the player’s starting class, and the inventory. The
levels follow a somewhat linear structure with many branches
and sub-dungeons in between. For instance, the entrance to the
gnomish mines always spawns somewhere between depth 2
and 4, giving the player the option to explore them immediately
or to postpone exploration until they are stronger.

NetHack encompasses a diverse array of monsters, items,
and interactions. Players must skillfully utilize their resources
while avoiding many of the game’s lethal threats. Even for
seasoned players possessing extensive knowledge of the game,
victory is far from guaranteed. The game’s inherent complexity
requires players to continuously re-assess their situation to
adapt to the unpredictability of the elements at play.

Nethack uses description files (des-files) to describe special
levels like the oracle level that always contains a room
with an oracle monster, centaur statues, and four fountains.
Des-files offer extensive control over the level-generation
process, allowing entirely handcrafted levels or a slightly
constrained level-generation process.

B. NetHack Learning Environment

The NetHack Learning Environment NLE [10] serves as a
reinforcement learning environment for playing NetHack 3.6.6.
NLE offers easy access to most aspects of the game, such
as the map, the agent’s inventory, game messages, and the
player’s stats. While NLE provides simplified environments

for learning purposes, it also allows users to play the entire
game without any restrictions.

MiniHack [11] utilizes NLE alongside des-files to construct
small-scale environments that isolate specific challenges that
agents will encounter in NetHack. Although MiniHack provides
a list of challenges, its primary purpose is to streamline the
process of designing new challenges.

C. Autoascend

In the 2021 NeurIPS NetHack Challenge [9], participants
tackled the symbolic and neural tracks, where solutions were
either handcrafted or designed using machine learning. Notably,
the top-performing agents were exclusively symbolic, with the
autoascend agent emerging as the frontrunner.

The autoascend agent [12] succeeded by meticulously
parsing observations and creating an internal state represen-
tation to track essential information. The agent utilized the
enriched data to implement a behavior tree by hierarchically
combining strategies representing specific behaviors, like
fighting, picking up objects, or exploring levels. Overall,
autoascend’s strategy consists of staying on the first
dungeon level until reaching experience level 8, after which it
will rapidly progress deeper into the dungeon. While following
this general strategy, autoascend uses many sub-strategies
to improve its chance of success, such as a solver for solving
the Sokoban levels, using altars for farming or identifying items,
or dipping a long sword into a fountain to gain Excalibur.

Despite its victory, autoascend’s performance depended
heavily on its starting class, demonstrating optimal results with
the Valkyrie class. The agent occasionally descended to depth
10 and reached experience level 10. However, it is crucial to
highlight that reaching around depth 50 is only one of the

https://alt.org/nethack/


objectives to beat NetHack, emphasizing how challenging the
environment still is.

D. LLM Agents

Recently, a plethora of LLM-based agents have emerged,
aiming to leverage the planning capabilities of these models.
A prominent testbed for these agents is Minecraft [4]–[6],
primarily focusing on the agent’s ability to obtain the various
items in the game. While the details vary, most approaches
implement a closed-loop planning system in which the LLM
generates a plan consisting of a sequence of predefined skills.
The plan is then executed and, in case of failure, the agent
will re-plan using only feedback from the previous plan. A
noteworthy aspect of these agents is the storage and reuse of
successful plans, significantly enhancing overall performance
due to the hierarchical nature of obtaining items like a
diamond pickaxe. The agents primarily utilize an LLM for
their knowledge of how to acquire items. However, one agent
has demonstrated the ability to construct structures with human
feedback [6].

Other popular applications are robot environments, where
tasks include rearranging objects on a tabletop, interacting
within a kitchen, or engaging in simulated household activities
[2], [3], [13], [14]. Because these environments require more
dynamic decision-making compared to acquiring items in
Minecraft, agents like DEPS [13] and Inner Monologue [2]
adopt a distinctive approach. Instead of relying solely on
feedback from the last failed plan, they re-plan by considering
a substantial portion of their recent interaction history. Similar
to our approach, Inner Monologue models the interaction
history as a chat containing the LLM’s actions and thoughts,
human feedback, and feedback from the environment, such as
scene descriptions and if an action was successful. While the
robot environments require more dynamic decision-making, the
complexity of the observations is limited, usually consisting of
a list of visible objects with spatial information being omitted
as the low-level skills are handling it.

An alternative use of LLMs involves employing them
to design reward functions, which are then used to train
reinforcement learning agents [15]–[17]. Most relevant to our
work, Motif employs an LLM to learn various playstyles
in NetHack. It achieves this by tasking the LLM to decide
which of NetHack’s game messages it prefers. Motif can
leverage these preferences to learn reward functions for different
playstyles by conditioning the LLM to prefer game messages
associated with a specific playstyle, such as fighting monsters.

III. NETPLAY

This section discusses our LLM-powered Nethack agent
NetPlay. See fig. 2 for an overview of the architecture.
Long-term planning in NetHack proves challenging due to
its unpredictability, as we cannot know when, where, or what
will appear as we explore. Consequently, our agent shares
many similarities with Inner Monologue, designed for dynamic
environments. It implements a closed-loop system where the
LLM selects skills sequentially while accumulating feedback

in the form of game messages, errors, or manually detected
events. Although we avoid constructing entire plans, the LLM’s
thoughts are included for future prompts, allowing for strategic
planning if deemed necessary by the LLM. Notably, while the
presented architecture enables an LLM to play NetHack, it is
still too limiting to allow for detailed strategic decision-making.

A. Prompting

We prompt the LLM to choose a skill from a predefined list.
The prompt comprises three components: (a) a description of
the observation, (b) the agent’s short-term memory, and (c) a
task description alongside the output format.
(a) The observation description primarily focuses on the

current level alongside additional data like context, inventory,
and the agent’s stats. Because we do not use a multi-modal
LLM, we attempt to convey spatial information by dividing the
level into structures like rooms and corridors. Each structure
is described using a unique identifier, the number of steps to
reach it, the objects it contains with their respective positions,
and the number of steps to reach each object. Monsters are
described separately from the structures by categorizing them
as close or distant, indicating their potential threat level. Each
monster is described using its name, position, and number of
steps to reach it. For close monsters, we also include compass
coordinates. The LLM is also informed about which structures
can be further explored alongside the positions of boulders
and doors that block exploration progress. Note that despite
our emphasis on providing spatial information, navigating the
environment proved challenging for the LLM. Consequently,
we automated a large portion of the exploration process using
a single skill, potentially rendering certain aspects of this
observation description obsolete.
(b) The short-term memory is implemented using a list of

messages representing the timeline of events. Each message is
either categorized as system, AI, or human. System messages
convey feedback from the environment like game messages
or errors, AI messages capture the LLM’s responses, and new
tasks are indicated by human messages. Note that while it is
possible for a human to provide continual feedback, we only
study the case where the agent is given a task at the start of the
game. The memory size is capped at 500 tokens, with older
messages being deleted first. Observation descriptions are not
stored in the memory due to their size.
(c) The task description includes details about the current

task, available skills, and a JSON output format. We employ
chain-of-thought prompting [18] to guide the LLM to a skill
choice.

B. Skills

Skills, similar to strategies in autoascend, implement
specific behaviors by returning a sequence of actions. They
accept both mandatory and optional parameters as input. Skills
can generate messages as feedback, which are stored in the
agent’s memory. Messages are often used, for example, to
report why a skill failed. An excerpt of skills can be found in
table I.



Fig. 2: Illustration of NetPlay playing NetHack. A prompt is constructed using messages containing the agent’s memory, a
description of the current observation, and a task description with available skills and the desired output format. The LLM
response is then parsed to retrieve and execute the chosen skill. While executing the selected skill, a tracker enriches the
given observations and detects important events, such as when a new monster appears. When the skill is done or events
interrupt the skill execution, the agent will restart the prompting process. An example prompt can be found on Github:
https://github.com/CommanderCero/NetPlay/blob/main/example prompt plus messages.txt

Navigation is automated through skills like “move to x y”
or “go to room id”. However, exploring levels with only these
skills proved challenging for the LLM. To address this, we
introduced the “explore level” skill, which uses the exploration
strategy from autoascend. This skill explores the current
level by uncovering tiles, opening doors, and searching for
hidden corridors. We removed the ability to kick open doors to
avoid potential issues such as aggravating shopkeepers. Note
that the agent can still decide to kick open doors using a
separate “kick” skill. All movement-related skills will attack
monsters that are in the way. The LLM can turn off this
behavior using the “set avoid monster flag” skill.

To indicate when the agent is done with a given task, it
has access to the “finish task” skill. Additionally, the LLM
is equipped with the “press key” and “type text” skills for

navigating NetHack’s various game menus. While a menu
is open, only the “finish task” and text input skills remain
available.

The remaining skills are thin wrappers around NetHack
commands, such as drink or pickup. However, these commands
often involve multiple steps, such as confirming which item
to drink or first positioning the agent correctly to then pick
up an item. Consequently, the LLM often assumed that the
“drink” command accepts an item parameter or that “pickup”
works seamlessly regardless of the agent’s current position. To
mitigate these issues, we implemented four types of command
skills. Base commands only invoke the command. Position
commands offer the option to first move to the desired location.
Inventory commands accept an item parameter to resolve the
following popup menu. Finally, direction commands like “kick”

https://github.com/CommanderCero/NetPlay/blob/main/example_prompt_plus_messages.txt


TABLE I: Skill Examples: Skills represent parametrizable behaviors that the LLM uses to play the game. The name,
parameters, and descriptions help to understand what each skill does. For some skills, the LLM can omit optional parameters
marked in [square brackets]. Note that the skill type is only used internally and does not matter for the final agent.

Type Name Parameters Description

Special explore level Explores the level to find new rooms, as well as hidden doors and corridors.
Special set avoid monster flag value: bool If set to true skills will try to avoid monsters.
Special press key key: string Presses the given letter. For special keys only ESC, SPACE, and ENTER are supported.
Position pickup [x: int, y: int] Pickup things at your location or specify where you want to pickup an item.
Position up [x: int, y: int] Go up a staircase at your location or specify the position of the staircase you want to use.
Inventory drop item letter: string Drop an item.
Inventory wield item letter: string Wield a weapon.
Direction kick x: int, y: int Kick something.
Basic cast Opens your spellbook to cast a spell.
Basic pay Pay your shopping bill.

move the agent close to a desired position before executing
the command in the correct direction.

C. Agent Loop

Upon receiving a new task, the agent prompts the LLM to
select the first skill to execute. The LLM’s thoughts and the
selected skill are stored in the agent’s memory as feedback.
While executing the chosen skill, a data tracker observes and
records details such as found structures, features hidden by
monsters or items, which tiles the agent has already seen or
searched, and events. The information collected by the data
tracker is used by skills to make decisions.

The data tracker also looks for specific events in the game to
provide additional feedback to the LLM. Events include new
in-game messages, newly discovered structures, level changes
or teleports, stat changes, low health, and the discovery of new
monsters, items, and some map features such as fountains or
altars.

A skill continues to run until completion or interruption.
Skills are interrupted when specific events occur, such as
changing the level, teleporting, discovering new objects, and
reaching low health. In addition to events, many skills are
interrupted when a menu shows up due to their inability to
handle them. Regardless of why a skill stopped, the agent then
prompts the LLM to select the next skill. The sole exception is
when the “finish task” skill is selected, or the game has ended,
at which point the agent will stop until it receives a new task.

D. Handcrafted Agent

To assess the impact of the LLM in contrast to the predefined
skills, we implemented a handcrafted agent that aims to
replicate the behavior of NetPlay with the task set to “Win
the Game”. The following list shows a breakdown of the agent’s
decision-making process.

1) Abort any open menu, as we did not implement a way
to navigate them.

2) If there are hostile monsters nearby, fight them.
3) If health is below 60%, try healing with potions or by

praying.
4) Eat food from the inventory when hungry.
5) Pick up items, which in this case are potions and food.
6) If nothing to explore, move to the next level if possible.

7) If nothing else to do, explore the level and try kicking
open doors.

All the conditions are evaluated in sequence. Once a
condition is met, a corresponding skill is executed. The selected
skill will be interrupted in the same way as NetPlay. Once
a skill is interrupted, the agent will choose the next skill by
again checking all conditions in order starting from the first.
Note that although we aimed to imitate NetPlay’s behavior,
the provided rules are too simplistic to capture all the nuances.

IV. EXPERIMENTS

Our goals for the experiments were two-fold. First, to
evaluate the ability of NetPlay to play NetHack. Second, to
provide an analysis of the agent’s strengths and weaknesses,
focusing on identifying which aspects are influenced by the
LLM.

A. Setup

All of our experiments used OpenAI’s GPT-4-Turbo (GPT-
4-1106-PREVIEW) API as LLM with the temperature set to 0
and the response format set to JSON. Other models were not
considered as initial tests revealed that models like GPT-3.5
and a 70B parameter instruct version of LLAMA 2 [19] could
not correctly utilize our skills. The agent’s memory size was
set to 500 tokens.

The agent had access to most commands that interact with
the game directly, except for some rarely relevant commands,
like turning undead or using a monster’s special ability. All
control and system commands, like opening the help menu or
hiding icons on the map, were excluded. We also implemented
a time limit of 10 LLM calls, at which point the experiment
would terminate if the in-game time did not advance.

B. Full Runs

We started evaluating NetPlay by letting it play NetHack
without any constraints, tasking it to win the game. We will
refer to this agent as the “unguided agent.” Although the task
was to play the entire game, the agent occasionally confused
its own objectives with the assigned task, resulting in the agent
marking the task as done too early. To address this issue, we
disabled the “finish task” skill for this experiment.



TABLE II: Results summary of the mean and standard error for the agents achieved score, depth, experience level, and game
time.

Metric NetPlay (Unguided) NetPlay (Guided) autoascend handcrafted

Score 284.85 ± 222.10 405.00 ± 216.38 11341.94 ± 11625.39 250.24 ± 159.17
Depth 2.60 ± 1.39 2.00 ± 1.05 4.01 ± 3.04 2.35 ± 0.93
Level 2.40 ± 1.23 3.30 ± 0.95 3.34 ± 7.69 2.39 ± 1.05
Time 1292.10 ± 942.74 2627.40 ± 1545.12 21169.81 ± 9155.59 1306 ± 924.17

Due to budget limitations, we evaluated all agents using
only the Valkyrie role, as most agents performed best with this
class during the NetHack 2021 challenge. We conducted 20
runs with the unguided agent. Additionally, we performed 100
runs each with autoascend and the handcrafted agent for
comparison. After evaluating the unguided agent, we carried
out an additional 10 runs employing a “guided agent” who
was informed on how to play better. A detailed description of
the guided agent will be provided below. For now, a summary
of the results can be found in table II.

Table II shows that autoascend far outperforms both
NetPlay and the handcrafted agent. While NetPlay man-
aged to beat the handcrafted agent by a small margin, it is
likely that with a few tweaks, the handcrafted agent can also
outperform NetPlay.

The unguided agent primarily failed due to timeouts, fol-
lowed by deaths caused by eating rotten corpses, fighting with
low health, or being overwhelmed by enemies. Many timeouts
were caused by the agent attempting to move past friendly
monsters, such as a shopkeeper. By default, bumping into
monsters attacks them, but for passive monsters, the game
prompts the player before initiating an attack. The agent’s
refusal to attack these monsters often leads to a loop of
canceling the prompt and moving, resulting in eventual timeouts.
A similar loop took place when the agent attempted to pick up
an item with a generic name on the map but a detailed name
in the game’s menu. This confusion led the agent to repeatedly
close and reopen the menu, unable to locate the desired item.

Based on the results of the unguided agent, we constructed
a guide that included strategies from autoascend, such as
staying on the first two dungeon levels until reaching experience
level 8, consuming only freshly slain corpses to avoid eating
rotten ones, and leveraging altars to acquire items. Furthermore,
we provided tips for common mistakes by the unguided agent,
such as avoiding getting stuck behind passive monsters and
informing the agent about the time limit to avoid timeouts.

The guided agent often managed to stay alive longer by
consuming freshly killed corpses and praying when hungry
or at low health. Its causes of death have been a mixture of
timeouts, starvation, and dying in combat. Most of the timeouts
stemmed from a bug with our tracker, which fails to detect
when an object disappears while being obscured by a monster.
For example, the agent repeatedly attempted to pick up a
dagger already taken by its pet due to the tracker’s misleading
observation. Despite receiving game messages indicating the
absence of the item, the agent failed to recognize the situation
accurately.

Because we tasked the guided agent to stay on the first two
dungeon levels, its average depth is lower than that of the
unguided agent. However, because monsters keep spawning
over time, staying on the first levels is an excellent way to
grind experience. This results in the guided agent gaining more
experience than the unguided agent. Nevertheless, the agent’s
tendency to stay on the first dungeon levels frequently caused it
to die of starvation due to not finding enough monster corpses
to eat. Note that autoascend had a similar starvation issue.

C. Scenarios

After conducting the full runs, we hypothesized that although
NetPlay can be creative and interact with most mechanics
in the game, it tends to fixate on the most straightforward
approach for a given task. To confirm this hypothesis, we
constructed various small-scale scenarios using des-files and
a corresponding task description. Note that we excluded the
handcrafted agent and autoascend for this experiment as
they cannot easily alter their behavior.

The tested scenarios evaluated NetPlay’s ability to interact
with game mechanics, follow instructions, and its creativity.
We conducted five runs for each scenario, with all roles and the
“finish task” skill enabled. We also repeated some scenarios
where the agent performed poorly with additional guidelines.
We censored the word NetHack for the scenarios to evaluate
the agent’s ability independently of its knowledge about the
game. To avoid the agent never using the “finish task” skill,
we set a time limit of 500 timesteps for creative scenarios and
200 for the others. See table III for a summary of the tested
scenarios and their results.

The tested scenarios show that NetPlay performs best
when provided with concrete instructions. The FOCUSED
BOULDER task and both ESCAPE tasks, in particular, highlight
how the agent can act creative if we focus its attention on a
specific problem. However, without very detailed instructions,
the agent often fails to do what it wants due to incorrect actions
and a lack of explicit feedback.

The agent’s struggle with explicit feedback is particularly
evident in the BAG and MULTIPICKUP scenarios, where the
agent often failed to navigate the menus correctly. While it
understood the menus and often chose the correct course of
action, it often failed by forgetting a crucial step, such as
closing the menu.

V. POTENTIAL AND LIMITATIONS

NetPlay uses a similar architecture to Inner Monologue
and DEPS, which have shown promising results for simple



TABLE III: Scenarios: A detailed description of all the tested scenarios, their results, and the agent’s success rate. Note that in
some scenarios, the agent did not use the “finish task” skill, even after completing it. We still count these as success.

Scenario Success Description Results
Game Mechanics

BAG 1/5 A room with four random objects and a bag of holding
with the task of stuffing all objects into the bag.

The bag of holding menu is quite complex. The agent was
only successful when using the option that automatically
stuffs all items into the bag. In the other cases, the agent
forgot to mark an item or to confirm its selection.

GUIDED BAG 3/5 Same as BAG, but we told the agent the quickest way to
pick up items and to navigate the bag’s menu.

The agent used the automatic option three times. In the
other cases, the agent marked the task done too early,
stating that it would pick up the remaining items next.

MULTIPICKUP 3/5 A room with 2-5 objects on the same spot, challenging
the agent to navigate the multipickup menu.

The agent often picked up items inefficiently by opening
the pickup menu multiple times. It failed twice by
forgetting to confirm its item selection.

WAND 1/5 A room with a statue and a wand with the task of hitting
the statue with the wand.

The agent often failed by standing atop the statue and
casting the wand onto itself. Only once did the wand
spawn next to the statue, causing the agent to cast the
wand towards the statue.

GUIDED WAND 5/5 Same task as WAND, but we asked the agent to stand next
to the statue instead of on top of it and fire in the statue’s
direction.

Most of the time, the agent succeeded on the first try,
except once when he got it on the second try after
repositioning himself.

Instructions
ORDERED 5/5 A room with the task to pick up two wands, then a scroll

of identification, and finally to identify one wand.
The agent executed the tasks accurately in the given order.

UNORDERED 3/5 A room with the task to drink from a fountain, open a
locked and a closed door, and kill a monster in any order.

The agent completed the tasks in no particular order. One
fail stemmed from high-level mobs spawning from the
fountain, and one from incorrectly using the lockpick.

ALTERNATIVE 5/5 Three rooms with a fountain and a potion somewhere. The
task was to drink from a fountain or a potion.

The agent always drank from the fountain, which in all
cases was found first or was closest to the agent.

CONDITIONAL 4/5 Three rooms, with only a single potion hidden in one of
the rooms. The task was to drink from a fountain, or if
unavailable a potion.

The agent always drinks the first potion it finds without
exploring further. In one case, it deemed the task impossi-
ble due to spawning with no fountain or potion in sight.

Creativity
CARRY 1/5 The agent has to carry two very heavy objects through a

monster-filled room. We also provided tools such as a bag
of holding, a teleportation wand, and an invisibility cloak.

The agent often refused to play because it could not see
the required items or it dropped them in the wrong room.

GUIDED CARRY 4/5 Same task as CARRY, but we told the agent to prioritize
killing monsters first, to carry only one of the heavy items
at a time, and to use the teleportation wand for easier
travel.

Most of the time, the agent carried only one item, and it
often used the wand to teleport. It failed once by dropping
one item in the incorrect room.

BOULDER 1/5 Two rooms connected by a corridor with a boulder. The
agent starts either with pickaxes or wands to remove the
boulder.

When given only wands, the agent only used explore level
and ignored the boulder. Only once did it start with a
pickaxe that it used to mine the boulder.

FOCUSED BOULDER 3/5 Same task as BOULDER, but the agent was told to remove
any boulders blocking its path.

The agent often tried kicking the boulder, which failed,
after which it then used a pickaxe or a wand. It failed
twice due to not correctly utilizing the available tools.

GUIDED BOULDER 5/5 Same task as FOCUSED BOULDER, but the agent was
told explicitly to remove the boulder with the wands or
pickaxes. We also provided directions on how to utilize
the tools.

In all cases, the agent quickly used the pickaxe or a wand
to remove the boulder.

ESCAPE 3/5 The agent must escape from a stone-walled room. Escape
methods: Digging with a wand through a wall, teleporting
with a wand, or morphing into a wall-phasing monster
using a polymorph control ring with a polymorph wand.

The agent escaped twice by teleporting, despite initial
teleport failure. It also experimented with the wand of
digging, casting it in all directions to find an exit. It failed
twice due to incorrectly using the wands.

HINT ESCAPE 5/5 Same as ESCAPE, with a hint engraved on the floor. The
hint either reveals which wall is brittle and leads to an
escape or hints at the name of the wall-phasing monster.

After finding the hint, the agent often used the suggested
escape method, except for one occasion when it teleported
instead. In one instance, the initial attempts to dig through
the wall failed, so it resorted to exploring other methods.



dynamic environments. Our experiments show that despite the
complexity of NetHack, the agent can fulfill a wide range of
tasks given enough context information. To our knowledge,
this is the first NetHack agent to exhibit such flexible behavior.
However, the benefits of the presented approach seem to
diminish the more ambiguous a given task is.

A promising use case of the presented architecture is
regression testing during game development. Game developers
could test specific aspects of their game by providing NetPlay
with detailed instructions on what to test. This approach could
not only streamline the testing process, but it would also
benefit from NetPlay’s flexibility, enabling the tests to adapt
dynamically as the game evolves.

Given NetPlay’s proficiency when given detailed context
information, an obvious extension to our approach would be
granting the agent access to the NetHack Wikipedia. This
could be done using a skill that accepts a query and adds
the resulting information to the agent’s short-term memory.
While we think this can improve the results at the cost of more
LLM calls, finding the most relevant information for a given
situation would be tricky. Instead, we recommend investing
future research into automated methods for finding relevant
context information, with a particular focus on finding the most
successful past interactions as guidelines on how to play.

A significant limitation of our approach lies in our skills
and observation description, which struggle to encompass
NetHack’s complexity. Designing the agent to handle all
potential edge cases proved challenging, as it is difficult to
anticipate every scenario. While the premise of this approach
is that the LLM can handle these edge cases, this only works
if we have a comprehensive description of the environment
and flexible skills. In practice, this would require an ever-
growing repertoire of skills and an extremely long observation
description.

VI. CONCLUSION

In this work, we introduce NetPlay, the first LLM-powered
zero-shot agent for the challenging roguelike NetHack. Building
upon an existing approach for simple dynamic environments,
we extended its capabilities to address the complexities of
NetHack. We evaluated the agent’s performance on the whole
game and analyzed its behavior in various isolated scenarios.
NetPlay demonstrates proficiency in executing detailed

instructions but struggles with more ambiguous tasks, such
as winning the game. Notably, a simple rule-based agent
can achieve comparable performance in playing the game.
NetPlay’s strength lies in its flexibility and creativity. Our
experiments show that, given enough context information,
NetPlay can perform a wide range of tasks. Moreover, by
focusing its attention on a particular problem, NetPlay is
adept at exploring a wide range of potential solutions but often
with limited success due to a lack of explicit feedback.
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