The 2013 Multi-Objective Physical Travelling
Salesman Problem Competition

Diego Perez, Edward Powley, Daniel Whitehouse, Spyridon Samothrakis, Simon Lucas, Peter I. Cowling

Abstract— This paper presents the game, framework, rules
and results of the Multi-objective Physical Travelling Salesman
Problem (MO-PTSP) Competition, that was held at the 2013
IEEE Conference on Computational Intelligence in Games
(CIG). The MO-PTSP is a real-time game that can be seen
as a modification of the Travelling Salesman Problem, where
the player controls a ship that must visit a series of waypoints in
a maze while minimizing three opposing goals: time spent, fuel
consumed and damage taken. The rankings of the competition
are computed using multi-objective concepts, a novel approach
in the field of game artificial intelligence competitions. The
winning entry of the contest is also explained in detail. This
controller is based on the Monte Carlo Tree Search algorithm,
and employed Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) for parameter tuning.

I. INTRODUCTION

Game competitions have regularly appeared in artificial
intelligence (AI) conferences within the last decade. Apart
from being excellent benchmarks for comparing different
algorithms in similar scenarios, they are very useful for
educational purposes, as many research or graduate students
have the opportunity to initiate themselves into the field
of artificial intelligence. Assuming these competitions are
managed properly, they provide testbeds for participants to
test their algorithms in an independent and centralized system
(provided by neutral competition organizers), supplying the
basis to draw conclusive results.

In the last few years a wide variety of games have been
used as the basis for competitions at many conferences, pro-
viding a number of distinct challenges for AI. Among many
others, some of them have been particularly successful: the
Ms. Pacman vs. Ghost competition [[1] allowed participants
to take part in the popular game of PacMan both as the player
and the ghost team, exploring agent coordination in the latter
case. The Starcraft competition [2] tackled problems like unit
management and partially observable game states, and the
popular Car Racing Competitions [3] have, as one of their
most important features, the player dealing with other drivers.

The purpose of the competition presented in this paper
was to cover one of the aspects that has not been analyzed
before in Al real-time game competitions: multi-objective

Diego Perez, Spyridon Samothrakis and Simon Lucas are with the School
of Computer Science and Electronic Engineering of the University of Essex
(email: {dperez, ssamot, sml}@essex.ac.uk).

Edward Powley is with Orange Helicopter Games, York, UK (email:
ed @orangehelicopter.com).

Daniel Whitehouse and Peter I. Cowling are with the Department of Com-
puter Science and York Centre for Complex Systems Analysis, University
of York (email: dw830, peter.cowling} @york.ac.uk).

This work was supported by EPSRC grants EP/H048588/1 and
EP/H049061/1.

optimization. The game proposed for the competition re-
quires the optimization of three different objectives, some of
them clearly opposing others. The outcome of the research in
this field would not only benefit games like the one proposed
here, but also other single-objective games where multi-
objective approaches could also be taken. As an example,
real-time strategy games could benefit from such approaches,
as agents usually have to deal with simultaneous tasks:
attacking/defensive unit production, resource gathering and
world exploration. Additionally, this paper introduces a new
way of ranking entries in real-time game competitions, by
attending to multi-objective concepts such Pareto fronts and
Pareto dominance.

The paper is organized as follows: Section [[I| explains the
game used in the competition. Then, Section [[II| details the
game framework and how controllers for this game can be
created. Later, Section defines the competition, its differ-
ent tracks and rules. The results of the contest are discussed
in Section [V]| Section [VI| explains the approach taken by the
competition winner and, finally, Section concludes the
paper with a final evaluation of the competition.

II. THE MULTI-OBJECTIVE PHYSICAL TRAVELLING
SALESMAN PROBLEM

The Multi-Objective Physical Travelling Salesman Prob-
lem (MO-PTSP) is a modification of the Physical Travelling
Salesman Problem (PTSP), previously introduced by Perez
et al. [4] for the WCCI 2012 PTSP Competition. The PTSP
is a game where the player controls a ship with the goal
of visiting 10 waypoints scattered around the maze in as
little time as possible. MO-PTSP adds two more goals to
the game: the waypoints must be visited while spending as
little fuel as possible and reducing the damage suffered by
the ship. This section specifies the main components of the
MO-PTSP, such as the game physics, objectives and maps.

A. Game Physics and the real-time Component

Clearly, the PTSP and MO-PTSP share some character-
istics. One of these is the physics of the ship used by the
player to navigate through the game. In both games, the agent
controls a ship where two different inputs can be applied:
steering and throttle. The first input can be set to
left, straight and right, while the throttle can be turned on or
off. The combination of these inputs adds up to 6 different
actions (see Figure [I)) that can be provided at each game step
(also referred to here as tick, or game cycle).

Left and right rotations are performed using a fixed angle,
set to 7/60 radians, and the ship acceleration is set to

Action ID Steering Throttle
0 (Neutral action) | Straight (0) Off (0)
1 Left (-1) Off (0)
2 Right (1) Off (0)
3 Straight (0) On (1)
4 Left (-1) On (1)
5 Right (1) On (1)
Fig. 1

SHIP INPUTS AND ACTIONS.

0.025 pixels per game step squared (values determined by
trial and error in order to provide a satisfactory game-play
experience). The ship keeps its velocity from one game state
to the next, making inertia a key aspect to take into account
when governing the ship. However, the ship would reach a
full stop eventually if no acceleration actions were provided,
as there is a loss of speed due to friction. This friction is set
to 0.99 (i.e., only 1% of the speed is lost at each step), a
value also determined empirically.

The location of the ship in the world can be uniquely
determined by three vectors: position, that specifies the
coordinates of the center of the ship in the maze; direction,
a vector that indicates the direction the ship is facing; and
velocity, that determines the movement of the ship, including
its direction and speed. Note that direction and velocity
do not need to be aligned, which in practical terms means
the ship could be facing one direction and moving towards
another. Given an action, this element of the state of the ship
is modified as shown in Algorithm

Algorithm 1 Ship update function - no collisions.
function SHIPUPDATE(action)
throttle < action.GETTHROTTLE()
steering <— action.GETSTEERING()
ship.direction.ROTATES (steering X steerStep)
if throttle == true then
ship.velocity.ADD(ship.direction x shipAcc)
ship.velocity MULTIPLY (frictionLoss)
ship.position < ship.position + ship.velocity

The ship can also hit obstacles while it moves within the
level, so position and velocity need to be updated differently
if the ship’s circular bounding collision hits an obstacle in
the maze. When this happens, speed is reduced (by a 75%
factor) and the velocity vector is modified so the ship bounces
off the wall at the appropriate angle. However, the MO-PTSP
introduces a new type of elastic obstacle. Should the ship hit
this kind of obstacle, the reduction in speed is minor (only
10%), which means that the player can use this type of wall
to change the direction of travel abruptly, losing less speed
than only using throttle and steering. A third type of obstacle
(known as a damaging obstacle), produces a more important
decrease in the speed of the ship, reducing it by a factor of
90% (as well as damaging the ship, as explained later).

Another similarity between PTSP and MO-PTSP is the
real-time component of the game: the player (also referred to
here as agent, bot, or controller) must supply an action within
a limited time budget, set to 40 milliseconds. This limitation
forces the controller to determine the next move quickly,
rewarding those agents that are able to plan faster and explore
the action search space in a more efficient manner.

While the PTSP is a bit more permissive, MO-PTSP im-
poses disqualifications if this time limit is severely violated.
In the original game, a neutral action was applied if the
controller took more than 40 milliseconds to provide an
action, but no other consequences were derived from this
misbehaviour. This made the game susceptible to cheating
(from a real-time point of view, this stops the continuity of
the game, which is not acceptable), as an agent could take
as much time as it needed to plan ahead because the only
consequence would be a neutral action in a single game tick.

MO-PTSP tackles this situation by imposing a second
time limit, set to 120 milliseconds. If this is violated, it
causes the end of the game by disqualifying the player.
Although controllers could still potentially spend more than
40 milliseconds (with the same neutral move performed as
a penalty), the risk of being disqualified, and the limited
gain that could be obtained by the extra milliseconds spent,
discourages participants from performing this trick.

B. A Multi-Objective Approach

The main difference with respect to the original game,
the PTSP, can be found in the three different objectives that
need to be minimized: 1) Time: the player must collect all
waypoints scattered around the maze in as few time steps (or
game cycles) as possible; 2) Fuel: the fuel consumption by
the end of the game must be minimized; and 3) Damage: the
ship should end the game with as little damage as possible.

It is very important to stress that all waypoints must be
visited in order to consider a game as successfully finished.
Otherwise, a very simple but plausible approach for the
player could be not to move at all and hence obtain a
good result for the other two objectives (no fuel spent nor
damage suffered). A time-dependant game-over condition is
established if the ship has not visited a waypoint once the
timer has run out. This timer, initially set to 800 time steps, is
reduced by 1 at every step if no waypoint is visited, causing
the end of the game if it gets to 0.

The ship starts with an initial fuel amount of 5000 units,
and one unit is spent every time an acceleration action is
performed. Four fuel canisters are scattered around the maze,
each one providing 250 units of fuel. Visiting a new waypoint
also adds 50 fuel units more to the ship. It is important to
mention that it is not mandatory to pick these fuel canisters
up in order to complete the game, leaving their collection
up to the strategy of the player. Should the amount of fuel
available in the ship reach 0, the agent will no longer be able
to use the throttle during that game.

Regarding the third objective, the ship can be damaged
by two different game play elements. First, lava lakes are
present in the game levels, dealing 1 unit of damage for

every game step the ship is driving through them. Secondly,
the ship also sustains damage when colliding with obstacles
(with the exception of elastic obstacles), such as normal and
damaging obstacles. The former type of obstacles (normal
walls) inflict 10 units of damage. The latter obstacles, created
for this game, produce a more harming effect, dealing 30
damage units. If the player’s damage reaches 5000 units, the
ship is destroyed and the game is over.

When the ship is damaged by a collision, it enters in an
invulnerable state, where no more collision damage can be
dealt to the agent for 50 game steps. This avoids situations
in which too much damage could be suffered by the ship
should it be touching an obstacle right after colliding with
it.

C. Game Maps

Each level of the MO-PTSP follows a specific format,
employed in several games such as Warcraft, Starcraft or
Baldur’s Gate, based on the one defined by Nathan Sturte-
vant. This type of map has been used before by researchers
in the literature before E The levels are stored in ASCII files,
where each character determines the type of object or surface
located at that pixel in the map grid.

For MO-PTSP, obstacles are represented by the characters
’T?, ’D’ and ’L’, and are used to create normal, damaging
and elastic obstacles respectively. Normal surfaces use the
character ’.’, while lava lakes employ ’:’. Waypoints and fuel
canisters are indicated with ’C’” and "F’ respectively, and the
player’s ship is represented by the character ’S’.

Figure] presents an example of an MO-PTSP map, as
it is drawn by the framework. Not visited waypoints are
depicted as (filled) blue circles, while those already visited
are shown as empty circles. Green ellipses are used for the
fuel canisters, normal surface are brown in colour, whereas
lava is a red-dotted yellow surface. Elastic obstacles are blue,
normal obstacles black and damaging obstacles are drawn in
red. The ship is drawn as a dark blue polygon, with a green
triangle at the back when thrust is being used. The ship’s
trajectory is traced with a black line.

III. THE MO-PTSP FRAMEWORK
A. Software

The MO-PTSP framework code can be downloaded from
the competition webpage H The framework, under the name
of Starter Kit, contains the code, documentation, and 10 maps
to test the controllers in. The software is written in Java, and
these are the most important packages:

o Package controllers: this package contains sample
controllers to help participants develop their own (see
Section [[II-D).

o Package framework: this contains the main code of
the game, which takes care of the logic of the game
entities (waypoints, ship, etc.); graph: contains the
code for a simple pathfinding tool (see Section [[II-C]

Ihttp://movingai.com/benchmarks/dao/
2http://www.ptsp-game.net/

Fig. 2
SAMPLE MO-PTSP MAP.

for more details); finally, ut i 1s includes several useful
classes for the framework, such as 2D vectors and visual
frames.

Additionally, the package framework contains three Java
classes that allow the execution of the game:

e« ExecSync. java: this class allows the execution of
the software in three different ways: running a controller
in a given map, running it m times in n different maps,
and starting the human player mode, where the game is
played using the keyboard.

e ExecFromData. java: allows the execution of the
game in a map initialized through data structures, in-
stead of being read from a file. This mode can be used
to execute large numbers of consecutive runs, useful for
reinforcement learning or evolutionary algorithms.

e ExecReplay. java: every game played within the
framework can have the actions performed by the con-
troller saved into a file. This execution mode allows
replays of games saved in these files.

B. Game flow

In order to create a controller in this framework, a
new class must be created inheriting from the base class
framework.core.Controller. This class contains
one abstract method which must be implemented:

int getAction (Game, long);

This method receives a copy of the current game state
and a variable indicating the time when the controller is due
to return an action to execute. When this method is called,
the timer is set to 40 milliseconds beyond that instant. The
value returned by this method should be one of the following
6 action values, from framework.core.Controller:

¢ ACTION_NO_FRONT: Throttle off, no steering.

e ACTION_NO_LEFT: Throttle off, steer left.

e ACTION_NO_RIGHT: Throttle off, steer right.

http://movingai.com/benchmarks/dao/
http://www.ptsp-game.net/

e ACTION_THR_FRONT: Throttle on, no steering.
e ACTION_THR_ LEFT: Throttle on, steer left.
e ACTION_THR_RIGHT: Throttle on, steer right.

In addition to this method, every controller must imple-
ment a public constructor that receives the same two
parameters: a game instance, with the initial state, and a
time due. This constructor will be called just before the
game starts, and allows the controller to initialize its own
data structures and perform some initial planning. The time
budget for the constructor of the controller is 1 second, and
the game will be over if this time is violated.

The game flow of MO-PTSP is simple: the framework
creates the game, calculates the initialization time due (1
second beyond that instant) and calls the controller’s con-
structor to create the player. If the constructor takes more
time than the allowed, it is disqualified from this game.
Then, until the game is over, the framework calls the function
getAction to retrieve the next move to execute, providing
the current game state and the time due for the calculation
(40 milliseconds after the getAction call). Should this
function take more than 40 milliseconds, the neutral action
(ACTION_NO_FRONT) is executed. If the call takes more
than 120 milliseconds, the game is over and the controller is
disqualified from the game.

C. Game Interface

Controllers can access information about the current state
of the game using several functions available in the Game
class. Agents can query the game as to:

o Waypoints: location of the waypoints (both visited and
yet to be collected), number of waypoints visited and
how many are left.

o Time: number of time steps since the beginning of the
game, number of steps left to visit another waypoint.

o Fuel: remaining fuel in the ship.

o Damage: damage suffered so far in the game.

o Fuel canisters: location of the canisters, both collected
and not picked up yet.

o Map locations: for every position in the map, identify
the type of obstacle or surface in that location.

o If the game is over or not.

A very important function that Game exposes to the con-
troller is tick (int action). This method advances the
game state by applying the action indicated as a parameter.
By using this function, the agent can foresee the effects in
the game of the actions performed, allowing planning to
be performed in a closed loop manner. It is important to
highlight that MO-PTSP is a deterministic game (in other
words, one can be certain that applying a move a in the
game state s will always advance to the same next state).

The framework also comes with a simple implementation
of a path-finding algorithm that uses A*. This tool can be
employed by the agent to obtain paths between every pair
of positions in the maze. If the participant decides to use it
for the controller, then an 8-way connected graph is created
in the navigable parts of the map with a certain granularity

(separation between graph’s nodes). The computational time
this takes is not detrimental to those participants who prefer
not to make use of it, but rather to work on a more
sophisticated or efficient path-finding implementation.

D. Sample Controllers

The MO-PTSP framework contains several sample bots
to help ease the creation of controllers for the game. In
gradually increasing complexity, these samples show how
to operate with the different methods and libraries from the
framework.

The simplest sample controllers are RandomController and
WoxController, both of which execute actions at random,
with the peculiarity that the latter one shows how to operate
with the Wox library (as mentioned in Section [[II-A).

This random behaviour is enhanced in LineOfSightCon-
troller, that navigates towards a certain destination when a
waypoint or fuel canister is in line of sight with the ship.
The sample GreedyController takes care of the waypoints
and canisters that are not visible to the ship by means of the
pathfinding library included in the framework.

The most complex sample controller is MacroRSCon-
troller. This bot makes use of macro-actions (or repetitions
of the same action), a concept exploited in the previous
PTSP competition by the winner and other entries. The idea
is simple: instead of applying the chosen move in just one
game step, it is performed for the next n cycles. This way,
the algorithm is able to employ the next n game steps to
decide the next sequence of moves to make, increasing the
time budget to 40ms x n. A stochastic hill climber algorithm
is used to search for the actions to apply in the next move.

IV. THE MO-PTSP COMPETITION
A. Valid controllers for the competition

The controllers submitted for the competition must run in
the framework provided within the Starter Kit and, in order
to be a valid controller, the following characteristics must
be observed: reading from files during execution is allowed,
although writing is only possible in the controller’s own
directory. Multi-threading is not allowed and the process that
runs the agent must not use more than 256MB of memory.

The controller must be written in Java. Participants must
submit the source code in a zipped file, and the competition
server will unzip, compile and run the controller in the
appropriate set of maps. The controller must be submitted
before the competition deadline, and a short description of
the technique employed is expected.

B. Ranking entries

One of the main challenges of a multi-objective com-
petition is to evaluate and rank entries according to their
performance. In a single objective scenario, this is straight-
forward: if the objective of the game is to maximize a score,
or minimize completion time (like in the original PTSP), the
best result will be the one with the maximum or minimum
value that is measured.

However, multi-objective games pose the problem of eval-
uating objectives in conflict (as they are in this particular
case), as happens, for instance, with time and fuel: mini-
mizing completion time would naturally be achieved with
a higher speed, which is done by pressing the throttle more
often and therefore spending more fuel. In a similar way, very
fast controllers would usually follow straight line distances,
but this will make the ship drive through lava lakes most of
the time, increasing the damage taken.

The competition states that none of these objectives should
be preferred to the others. In other words, all three ob-
jectives must be optimized simultaneously. Given a single
map, where n results from different competitors have been
obtained, the entries are ranked in Pareto fronts. An MO-
PTSP result can be seen as a triplet R : (T, F, D), where T
is the time taken to complete the game, F' is the fuel spent
and D is the damage taken by the ship at the end of the
run. By applying concepts of Multi-Objective optimization,
we can say that a result Ry dominates another result Ry
(written R; = Ry) if:

1) R; is no worse than R, in all objectives.
2) At least one objective in R; is strictly better than its
analogous counterpart in Rs.

Dominance establishes a partial order in the results pro-
vided. However, there are some cases where it is not possible
to say that R; dominates Ry or vice versa (an example in
MO-PTSP would be when R; is better in the time objective,
but Ry spends a smaller amount of fuel than R1). When this
happens, it is said that these two results belong to the same
Pareto front. If there is no result found that dominates a given
result R, then R belongs to the optimal Pareto front. Thus,
it is possible to rank all results in different Pareto fronts,
and there will always be an optimal front. There will be no
results better than those allocated to the optimal front.

Once the results have been sorted into fronts, points are
given to the entries using the following scheme: controllers
with no results in the optimal front receive 0 points in this
map. 1 point is awarded to each entry that was able to obtain
a result that is included in the optimal Pareto front. Finally,
the best results for each objective in this map are tracked, and
points are awarded to the entries that achieved these records.
2, 9 and 24 additional points are awarded to the entries that
obtained respectively 1, 2 and 3 records in a map.

This scheme of points rewards those entries that clearly
dominate those of other contestants. For instance, if a result
is better than all others in all objectives, it will be the only
member of the optimal Pareto front, receiving a total of 25
(24 + 1) points in that map, as it obtained the best results in
all objectives.

A more common scenario is shown in Table [I, taken from
the final rankings of the competition in one of the starter kit
maps. The first three entries receive 1 point as they are in
the optimal pareto front, whereas the last two (dominated by
at least one of the first three entries) receive no points. The
first one obtains the best result in time and damage, so it
gets 9 extra points. The second entry gets the best result in

User Waypoints | Time | Fuel | Damage Points
PurofMovio 10 1745 | 403 301 9(+1) =10
mmorenosi 10 4472 [182 812 2(+1) =3

epowley 10 2737 | 227 519 0(+1) =1
macrors 10 1747 | 761 393 0
Weijia 10 1809 | 590 485 0

TABLE I
EXAMPLE OF ENTRIES RANKED IN A SINGLE MAP.

fuel, and is rewarded with 2 extra points. Finally, the third
entry only receives 1 point as it does not achieve any record
in this map, but it is still in the optimal front because no
other entry dominates it.

Another important aspect to determine is the number of
runs a controller performs in a given map. On the one
hand, a single run (also referred to here as a match) would
penalize potential unlucky cases where the controller behaved
poorly, or even did not visit all waypoints. On the other,
running several matches and calculating the average for each
objective would provide misleading results (a bot could try
to optimize only one objective per run, and the average
would show results that do not match with the real behaviour
of the controller in a single match). The competition takes
the following approach: each controller is allowed to run a
maximum of 5 times on each map, but the evaluation stops
as soon as all waypoints are visited in one match. Then, the
result of that particular run is used to rank the entry.

Finally, when a controller is evaluated in a set of n maps,
the final score is the sum of the points awarded on each one
of these levels. To compute the rankings in a set of maps, the
entries are sorted according to this total amount of points,
and the one with the highest score is declared the winner.

C. Competition Tracks

The MO-PTSP Competition is formed into three tracks.

1) Bot Competition Track: This track evaluates bots sub-
mitted to the competition. Before the deadline of the competi-
tion, some preliminary rankings are computed in the contest
server. Every time a participant submits a controller, it is
evaluated on a set of 20 maps, and the rankings of this set are
automatically updated in the website. This allows participants
to compare between themselves, and get a feeling about how
well their controllers would perform in the final rankings.

The set of maps is renewed every few weeks, in order
to avoid the controllers overfitting to any particular set. All
these maps are taken from a pool of unknown maps, that
does not include the levels from the starter kit. The final
evaluation, after the deadline of the competition, is run in a
new set of maps, where some are taken from the previous
sets and others are completely new to the participants.

2) Human Competition Track: The website allows users
to play the 10 games from the framework starter kit “as
humans” in an applet. The results are saved and rankings are
drawn to determine the best MO-PTSP human player.

3) Human vs. Bot Competition Track: Every time a con-
troller is submitted to the bot competition track, it is also
executed in the starter kit maps. A ranking is then calculated
from the results obtained by bots and humans in these maps,
allowing a direct comparison between the two.

V. RESULTS OF THE COMPETITION

The MO-PTSP Competition was held at the 2013 Con-
ference of Computational Intelligence in Games (CIG). The
contest received 6 submissions, and the final rankings also in-
cluded two of the sample controllers explained in Section
GreedyController and MacroRSController.

Tables [and [summarize the results of the bot and
human versus bot competition tracks respectively. As can
be seen, the winner of both editions is the same controller,
PUROFMoOVIO, which is described in detail in Section [VI}
The full rankings, detailing each one of the matches played,
can be seen on the competition website.

In the bot track, the winner achieves 305 points, out of a
maximum of 500. The distance from the second ranked bot,
WENIA, is very significant. Although the first two entries
are based on MCTS, the approaches are different: while
the winner analyzed the quality of a given game state by
a weighted sum of features, the second one incorporated
multi-objective measurements in the MCTS algorithm [5]].
It is important to note that the winning entry dominates in
all objectives in 7 maps, and is better in two objectives in
the other 13 levels.

Regarding the humans versus bot track, PUROFMOVIO
was able to beat the winner of the human track (here the
second best entry: MMORENOSI). Although its victory is
clear, in this track points are more widely distributed among
the first 8 ranked players. A total of 13 human players
participated in both the human and the human versus bot
tracks.

VI. THE WINNING ENTRY

This section gives a high-level overview of the winning
entry, PUROFMoOVIO. Further details can be found in [6].
PUROFMoOVIO is based on PUROFVIO, the winning entry to
the previous (single-objective) PTSP competitions [7], [8].

A. Architecture

The controller has three main components.

1) Distance mapper: During controller initialisation, the
shortest-path distance between every waypoint and every
other pixel on the map is computed using a scanline flood
fill algorithm [9]]. This means that during controller execution
the distance of a future ship position from the next waypoint
can be queried rapidly. The distance mapper takes lava into
account when computing distances: moving across a pixel
of lava costs the same as moving across 1 + vy pixels of
empty space, where + is a tunable parameter. An example of
a distance map is shown in Figure [3]

Fig. 3
AN EXAMPLE OF A DISTANCE MAP WITH A LAVA WEIGHTING OF v=1.
THE CONTOUR LINES CORRESPOND TO DISTANCES A MULTIPLE OF 25

PIXELS FROM THE ORIGIN (SHOWN AS A DOT).

2) Route planner: Also during controller initialisation, the
order in which to visit the waypoints is determined. Fuel
tanks are also included as “optional” waypoints. The route
planner uses classical TSP methods, namely the multiple
fragment heuristic [10] and 3-opt local search with first
improvement [[L1]], [12]. The edge weights in the TSP graph
are the shortest-path distances given by the distance mapper.

3-opt is a hill-climbing algorithm. Starting from an initial
path, it considers all triples of edges in the path and all ways
in which the path can be reconnected when those edges are
deleted. If a resulting path has a lower cost than the initial
path, the new path is kept and the process begins again. This
continues until no further improvements can be made. In the
classical TSP the cost of a path is its length, i.e. the sum
of the weights of its constituent edges. In PUROFMOVIO the
cost measure is modified to take the physics of MO-PTSP
into account: paths which require sharp turns at waypoints
or indirect paths between waypoints incur cost penalties.

3) Ship controller: During controller execution, the ship
is controlled by Monte Carlo Tree Search (MCTS) [13]
with several modifications to deal with the real-time aspect
of the problem. Instead of choosing a potentially different
action on every time step, the controller instead chooses a
macro-action, an action to be repeated for the next 7' time
steps. This means that instead of having 40 milliseconds
to choose each action, the controller has 407" milliseconds
to choose each macro-action. This reduces the controller’s
ability to make fine-grained adjustments to the ship, but is a
worthwhile tradeoff.

The second modification deals with the length of the
game, which even with macro-actions can result in a de-
cision tree several hundred plies deep. A fixed horizon on
MCTS is imposed. After d plies, all states are treated as
terminal: children are not expanded, simulations are halted.

Rank Bot \ Map 1(2(3/4|5|6|7 /|89 |10| 11| 12| 13| 14| 15| 16| 17| 18| 19| 20| Total
1 PurofMovio 10| 10| 25| 10| 10| 10| 10| 10| 10| 25| 10| 10| 25| 10| 25| 10| 25| 25| 25| 10| 305
2 Weijia 311(0(3]0|3(3[3|13]0|3[3|0(3|0|3]0|0]0|O0] 3
3 MacroRSControllery 0 | 3 |0 |0 |3 |0(1]0]j0|O0O|O|O]O]1T]|0]O0O|O0O]|O0O]O0O]|O 8
4 GreedyConroller |0 O |0 |0|O0O|O0O|O0O|O0O]O]O]O]|O0O]O|0O]|O|O]O0]O0O|O0]3 3
5 LordOkami ojojojofjojojojojoj{ofojojojojojojojoy|of}o 0
5 age_uc3m ojojojojojofjojojojofojojojojojojojoyjof}o 0
5 izzwish15 ojojojojojojojojojofojojojojojojojoyjof}o 0
5 Yasameer ojojojojojojojojojofojojojojojojojoy|oijo 0

TABLE 11

BOT TRACK COMPETITION RESULTS. THE FIRST TWO ENTRIES ARE TWO DIFFERENT VERSIONS OF MONTE CARLO TREE SEARCH (MCTS)
CONTROLLERS. THE TWO SAMPLE CONTROLLERS RANKED THIRD AND FOURTH, AND THE OTHER FOUR PARTICIPANTS, RANKED FIFTH, TOOK THE
FOLLOWING APPROACHES, IN THE ORDER SPECIFIED IN THE TABLE: A RULE BASE SYSTEM, A GENETIC ALGORITHM TO TUNE THE SAMPLE
GREEDYCONTROLLER, UPPER CONFIDENCE BOUNDS FOR TREES AND, FINALLY ANOTHER MCTS APPROACH.

Rank | Competitor \ Map | Type | 1| 2 | 3 | 4 | 5| 6 |7| 8 | 9 | 10 | Total
1 PurofMovio Bot 3125|1010 10]25|3|10|10] 1 107
2 mmorenosi Human | O | O | 3 | 3 1101331313 19
3 epowley Human | 0 | O 0 0 3 0|01 0 3 7
4 Weijia Bot 310,00} 0]0|0]0}|O0]3 6
5 MacroRSController Bot 0ojo0ojo0oL0]0]0(3]0]0]|O0 3
6 GreedyController Bot 3/]0]010]0]0(0]O0]O0]|O0 3
7 emsierra Human (O | O | O | O | O | O |1] 0] O 1 2
8 LordOkami Human [O| O | O | O | O | O]O| O] O0O]1 1
TABLE III
HUMANS VERSUS BOT TRACK COMPETITION RESULTS
The controller may sometimes become trapped in a local
> O optimum, where the search horizon is too short to see a path
;) towards the next waypoint. An example of this is shown in
S8 Lava Waypoth ; Figure [d The fitness function gives a reward for approaching
- Panic mode
I fitness the next waypoint but a penalty for damage incurred by

Normal fitness

Playout length

<Y

Fig. 4
ILLUSTRATION OF A LOW QUALITY LOCAL OPTIMUM IN A SIMPLIFIED
1-DIMENSIONAL VERSION OF MO-PTSP.

The resulting nonterminal state is evaluated by a heuristic
evaluation function. The most crucial terms in the evaluation
function are the number of waypoints collected so far, and
the distance from the ship to the next waypoint in the route.
There are also evaluation terms for fuel and damage, with
tunable parameters to control the emphasis placed on these
objectives.

driving through lava. The playout length is insufficient for the
search to determine that driving through the lava eventually
leads to the next waypoint and thus a higher fitness, so
the controller instead decides to sit at the edge of the lava
until the game times out. A mechanism called panic mode
is introduced to deal with this: if it is detected that MCTS is
failing to find lines of play that make progress towards the
goal, the search switches to an alternative evaluation function
which more aggressively guides the controller towards the
next waypoint (ignoring fuel and damage). The original
evaluation takes over again once the controller is unstuck
from the local optimum. Panic mode was found to have a
limited impact on the time, fuel and damage scores of the
controller, but improves its ability to collect all waypoints
without timing out.

B. Parameter tuning

PUROFMOVIO has 18 tunable parameters in total. Hand-
tuning of parameters is challenging: small changes in pa-
rameter values can have large and unpredictable effects on
the behaviour of the controller, and the randomised nature

of MCTS makes it difficult to assess whether an observed
change in behaviour is due to a recent parameter change or
simply a lucky or unlucky run.

The parameters were tuned using the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) algorithm [14].
CMA-ES optimises a vector of real-valued parameters by
repeating three steps: first, a population is sampled at random
according to a multivariate normal distribution; second, the
population is sorted in order of fitness; third, the fittest indi-
viduals are used to skew the distribution used for subsequent
samples. As these three steps are repeated, the sampling
distribution converges on an optimum.

Since CMA-ES does not use scalar fitness values but only
the fitness ranking of the population, it is readily adapted
to multiobjective problems [15]]. To measure the fitness of a
particular parameter vector, the controller is executed once
on each of the 10 starter kit maps and the total time, fuel
and damage are measured. The population is then ranked
by non-dominated sorting: individuals on the optimal Pareto
front receive rank 1 and are removed; from what remains of
the population, individuals on the new Pareto front receive
rank 2 and are removed; and so on until the population is
exhausted. Within each rank, the individuals are sorted by
the sum of time, fuel and damage, with equal weights. Igel
et al. [15] suggest more sophisticated tie-breaking schemes,
but due to time constraints these were not implemented.

Results of parameter tuning are presented in [6]. Parameter
tuning was run three times, obtaining three different sets
of parameters. The three tuned controllers outperform the
hand-tuned controller, but make slightly different tradeoffs
between objectives: for example the third set performs worse
on time than the other two, but uses significantly less fuel.

CMA-ES is able to handle noisy and esoteric fitness land-
scapes, and is explicitly designed not to require tuning. This
makes it especially attractive as a “black box” optimisation
method. A mature Java implementation has been made freely
available by the algorithm’s creatorsﬂ which was used to tune
the parameters for PUROFMOVIO.

VII. CONCLUSION

This paper describes the Multi-Objective Physical Travel-
ling Salesman Problem (MO-PTSP) game and competition,
detailing rules, tracks, rankings scheme and results. It also
analyzed the winning entry of the competition, a Monte Carlo
Tree Search algorithm with an heuristic tuned by CMA-ES.

The competition was won by a large margin, showing
the strength of the submitted controller. But it is also
worthwhile highlighting that the competition did not received
many submissions. In our opinion, this might be due to the
complexity of the game, and to the head start the winners had
by extending their controller, winner of the previous contest.

The multi-objective rankings scheme reflects accurately
the quality of the solutions, as the winner’s approach perfor-
mance is much higher than the next best entry. An important
remark is that, in contrast with single-objective rankings, the

3https://www.lri.fr/~-hansen/

addition of even a single new result can change profoundly
the existing Pareto fronts (a new result may dominate all
others), resulting in a complete reshuffling of competitors.
The competition attracted controllers that employed dif-
ferent techniques, although most of them were variants of
MCTS, a technique that has shown its quality and resilience
in a wide range of problems both in literature and in different
contests (as in the previous WCCI 2012 PTSP Competition).
In this particular case, the competition was useful for testing
new algorithms that are in development, like the entry by
Weijia et al. [3)]. Finally, the winning controller showed the
benefits of MCTS as a real-time planning and control algo-
rithm in conjunction with some add-ons, as the importance
of dividing long term and short term planning (waypoint
order versus navigation), coarsening the action space using
macro-actions, and the use of evolutionary algorithms to
tune the parameters of the heuristics employed. Possible
promising future research avenues include learning these
add-ons automatically and not incorporating them by hand.

REFERENCES

[1] P.Rohlfshagen and S. M. Lucas, “Ms Pac-Man versus ghost team CEC
2011 competition,” in Proceedings of IEEE Congress on Evolutionary
Computation, 2011, p. to appear.

[2] B. Weber, M. Mateas, and A. Jhala, “Building Human-Level AI
for Real-Time Strategy Games,” in Proceedings of the AAAI Fall
Symposium on Advances in Cognitive Systems., 2011, pp. 1-8.

[3] D. Loiacono, P. L. Lanzi, J. Togelius, E. Onieva, D. A. Pelta, M. V.
Butz, T. D. Lonneker, L. Cardamone, D. Perez, Y. Saez, M. Preuss,
and J. Quadflieg, “The 2009 Simulated Car Racing Championship,”
IEEE Transactions on Computational Intelligence and Al in Games,
vol. 2:2, pp. 131-147, 2010.

[4] D. Perez, P. Rohlfshagen, and S. Lucas, “The Physical Travelling
Salesman Problem: WCCI 2012 Competition,” in Proceedings of the
IEEE Congress on Evolutionary Computation, 2012.

[5] W. Wang and M. Sebag, “Hypervolume indicator and dominance
reward based multi-objective Monte-Carlo Tree Search,” Machine
Learning, vol. 92, pp. 403—429, 2013

[6] E.J. Powley, D. Whitehouse, and P. I. Cowling, “Monte Carlo Tree
Search with Macro-Actions and Heuristic Route Planning for the
Multiobjective Physical Travelling Salesman Problem,” in Proc. IEEE
Conf. Comput. Intell. Games, 2013, pp. 73-80.

, “Monte Carlo Tree Search with macro-actions and heuristic
route planning for the Physical Travelling Salesman Problem,” in Proc.
IEEE Conf. Comput. Intell. Games, 2012, pp. 234-241.

[8] D. Perez, E.J. Powley, D. Whitehouse, P. Rohlfshagen, S. Samothrakis,
P. I. Cowling, and S. M. Lucas, “Solving the Physical Travelling
Salesman Problem: Tree Search and Macro-Actions,” IEEE Trans.
Comp. Intell. AI Games (submitted), 2013.

[9] H. Lieberman, “How to color in a coloring book,” ACM SIGGRAPH
Comput. Graph., vol. 12:3, pp. 111-116, 1978.

[10] J. L. Bentley, “Experiments on Traveling Salesman Heuristics,” in
Proc. 1st Annu. ACM-SIAM Symp. Disc. Alg., 1990, pp. 91-99.

[11] S. Lin, “Computer solutions of the traveling salesman problem,” Bell
Syst. Tech. J., vol. 44, pp. 2245-2269, 1965.

[12] D. S. Johnson and L. A. McGeoch, “The Traveling Salesman Problem:
A Case Study in Local Optimization,” in Local Search in Combinato-
rial Optimization, E. H. L. Aarts and J. K. Lenstra, Eds. John Wiley
and Sons, 1997, pp. 215-310.

[13] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
Survey of Monte Carlo Tree Search Methods,” IEEE Transactions on
Computational Intelligence and Al in Games, vol. 4:1, pp. 1-43, 2012.

[14] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evol. Comp., vol. 9:2, pp. 159-195,
2001.

[15] C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for
multi-objective optimization,” Evol. Comp., vol. 15:1, pp. 1-28, 2007.

https://www.lri.fr/~hansen/

