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Abstract—This paper proposes a plan creation and execution
system used by the agent HTN Fighter in the Fighting ICE game
framework. The underlying approach implements a Hierarchical
Task Network (HTN) planner and a simple planning domain that
focuses on sequences of close-range attacks. The execution process
is tightly interleaved with the planning process compensating for
the uncertainty caused by the delay of 15 frames which the
information about the game world state is provided with. Using
an HTN and the proposed execution system, the agent is able
to follow high-level strategies staying reactive to changes in the
environment. Experiments show that HTN Fighter outperforms
the sample MCTS controller and the top three controllers
submitted to the 2016 Fighting Game AI Competition.

I. INTRODUCTION

In the last four years, the Fighting Game AI Competition1

became one of the well-known competitions for game-playing

agents. Using the FightingICE framework that represents many

similar commercial fighting games, it provides a highly-

dynamic test environment in the field of artificial and com-

putational intelligence in games.

Most of the early agents submitted to the competition were

rule-based and followed a simple decision making logic like,

for example, the winner of the 2015 competition Machete [1].

Later, some approaches tried to adapt their behaviors by pre-

dicting the opponent’s next action [2],[3] and learning fighting

strategies at run-time. Most of the participants of the 2016

competition implemented a variation of Monte Carlo Tree

Search (MCTS) which is provided with a sample agent [4], [5].

The best three agents of this competition implemented a

mixture of a rule-based system and MCTS [6]. Additionally,

there are some agents that used other approaches during

previous competitions trying to adapt their rule-bases like, for

example, BANZAI [6] and CodeMonkey [7] – the winner of

2014s competition which implemented dynamic scripting.

However, all of these approaches are purely reactive. Thus,

they search for an action that is optimal for the current

game state without taking into account previous actions or

future goals. None of these approaches implements high-level

strategies using long-term action plans. Although MCTS takes

into consideration possible outcomes of actions in future game

states, it still provides only one action at a time and performs

a new search in every frame.

1Fighting Game AI Competition: www.ice.ci.ritsumei.ac.jp/∼ftgaic

In this paper, we propose using a Hierarchical Task Network

(HTN) in order to create sequences of actions (plans) that are

supposed to provide more advanced behaviors. When using a

planner, it is possible to make decisions taking into account

long-term goals and high-level strategies providing longer

plans instead of single actions. For a fighting game, such

strategy could be, for example, keeping the opponent stunned

for some time while dealing more damage to him.

Although planning is widely used in other research areas,

there is a reason why it is barely applied in such highly-

dynamic environments as video games. In contrast to classical

planning environments which are static and where a created

plan can usually be executed to its end, game environments

change quickly. While an agent is still executing a plan step,

its opponent might perform a few actions so that the agent’s

plan becomes invalid and a new plan needs to be created. Thus,

planning and plan execution need to be tightly interleaved in

order for the agent to act deliberately [8]. This is an even

more difficult task for Fighting ICE where an agent gets the

information about the world state delayed by 15 frames. Thus,

the planner needs to rely on a simulation model in order to

approximate the present data.

In this work, we implement an HTN planner with a rela-

tively simple planning domain and combine it with the agent

controller HTN Fighter that is responsible for plan execution.

Amongst other behaviors, the planner makes use of the combo-

system provided by the game and generates plans of multiple

combo-attacks. The importance of such combo-attacks in a

fighting game is described in [9]. In order to recognize

plan failures, the agent controller checks the progress of the

previous plan step and the validity of the next one before

executing it. When necessary it queries the planner for a new

plan.

In order to test whether it is possible to use a planner in such

a highly-dynamic game, we let the agent play against the top

three agents of the 2016 Fighting Game AI Competition and

the sample MCTS controller. Therefore, we do not only look

at the agent’s overall performance, but also at his execution

of combos in the game.

The rest of this paper is structured as follows: Section II

gives some background information on the game framework

FightingICE and provides some insights into HTN planners.

Section III describes HTN Fighter’s architecture and its plan-

ning domain. Then, Section IV details experiments and their

results and finally, Section V concludes the paper proposing

some directions for future work.



II. BACKGROUND

A. FightingICE

The FightingICE platform offers an environment for re-

search in the area of artificial intelligence in games. This

framework presents a fighting game for two players which can

be either human players or programmed agents. Since 2013,

FightingICE is used for the Fighting Game AI Competition[10]

to which developers can submit their agents as participants of

a tournament.

Similar to many commercial fighting games, the setting of

FightingICE takes place on a spatially limited two-dimensional

stage on which the two players can move and perform certain

attack and defense actions. The players are represented by one

of the three game characters ZEN, GARNET and LUD, each

of which can perform certain skills. However, every character

has different requirements for the skills and achieves different

effects with them. This information is saved in the so-called

character data.

Besides the character data which do not change over time,

the agents can access the so called frame data which change

with every game frame. These data contain information about

e.g. positions of the two characters and the amounts of their

health and energy points and are used by most of the existing

agents for decision making. Since the game runs in 60 frames

per second, in every frame, an agent has 16, 67 milliseconds

to perform all necessary computations and to respond to the

game environment with an action. However, the agents get the

frame data delayed by 15 frames instead of the current data.

This adds more uncertainty to the game and makes it even

more difficult for the agents to make decisions.

Imitating the input of a human player, agents are required

to perform their actions through simulated key-inputs. Further-

more, performing certain actions in a sequence leads to a so-

called combo. A successfully performed combo of 4 combo-

attacks causes additional damage to the opponent. However,

in order to perform a combo successfully, the time between its

attacks is limited to 30 frames. Furthermore, a combo can be

aborted by the opponent through a so-called combo-breaker

skill which also has to be performed within a given period of

time. The fact that sequences of skills build up combos is an

additional reason for the usage of an HTN.

B. HTN

Hierarchical Task Networks [11, Chapter 11.5], [12] are

often used for planning purposes in the areas of robotics.

Also, there are some commercial games that successfully

implemented HTNs to define behaviors of non-player char-

acters [13]–[15]. Furthermore, there is some research being

done in the field of artificial intelligence in real-time strategy

games that uses HTNs for agent behavior [16].

A Hierarchical Task Network planner is a planner that –

in contrast to classical planners – does not search a space of

world states in order to find a goal world state. Instead, it takes

a high-level task that needs to be accomplished by an agent

and searches for possible decompositions of this task into a

sequence of sub-tasks. Thus, it uses a network of tasks that

build a hierarchy.
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Fig. 1: HTN planning example.

Tasks that can be decomposed into smaller parts are called

compound tasks and those, that are the leaves of the network

representing basic actions of an agent, are called primitive

tasks. Primitive tasks contain operators which correspond to

parametrized descriptions of agent actions [17]. Operators are

defined by preconditions under which they might be performed

and effects that they have on the world. In Figure 1, an agent

needs to move from home to park and thus, his top-most

compound task is MoveTo.

For the planner to be able to check preconditions and to

apply effects during the planning process, it requires an inner

representation of the world state and a simulation model. Usu-

ally, a world state, preconditions and effects are represented

by so-called facts which describe properties of the world by

some functions and variables. In our example, one of the facts

that are true in the initial world state S0, is isAtPosition(agent,

home) which describes the agent’s current position. After

getting into the car, the task’s effect is applied and the fact

isInCar(agent, car) is added to the next world state S1.

In order to describe how a compound task can be decom-

posed, the so-called methods are used. It is possible that a

compound task can be decomposed in multiple ways using

different methods. For example, the goal task MoveTo could

be accomplished by either moving by foot or by car. So, in

order to decide which method to use for a task decomposi-

tion, methods also have preconditions defining when they are

applicable. For example, moving by foot is only possible for

short distances and moving by car is not possible if there is

no car available. These preconditions are usually checked by

the planner for every method in the order that the methods are

defined in the planning domain which contains the description

of all tasks, methods and facts. In graphical representations,

the order is usually from left to right (see Figure 1). As soon

as an applicable method is found, it is used to decompose a

compound task. Usually, the preconditions of further methods

are not checked, unless the selected method fails to fully

decompose the task.

A method leads to further subtasks which can be prim-



itive or compound. If a primitive task such as GetIntoCar

is reached, it is added to the final plan. The process of

task decomposition continues until the plan contains only

primitive tasks. Well-known approaches to HTN planners are

the Simple Hierarchical Ordered Planner (SHOP) [18] and

his successor SHOP2 [19]. These implement the total-order

decomposition of tasks meaning that tasks are decomposed

and added to the plan in the same order that they will be

executed later on. However, it is also possible to use partial-

order decomposition, defining the order for only some of the

tasks [20].

In contrast to many reactive approaches that are usually used

to define agent behavior in video games, planners take long-

term goals into account and plan further in advance. They are

well applicable in the most video games, since ”many game

AI problems can be formulated as planning problems” [21].

Even though an HTN planner does not always provide the

optimal plan, because it does not search through the whole

search space, it is usually sufficient for a game environment,

as it is efficient and delivers some plan that is feasible and leads

to the goal. Furthermore, especially because of the hierarchical

decomposition of a problem into subproblems, an HTN is

more similar to human reasoning, so that the planning domain

can be easily constructed by developers.

III. HTN FIGHTER

In order to create a good planning domain for an HTN

planner, it requires good knowledge about the environment

that the planner has to operate in – namely the game. One

important aspect to consider are the preconditions of methods

and primitive tasks. With well-defined preconditions at higher

levels of a hierarchy, decisions can be made earlier, cutting

away unfeasible parts of the search space. Additionally, the

order of methods plays an important role if the search is guided

by this order only, without using any heuristics as is the case

for the work described here.

Keeping these aspects in mind, we created a relatively small

domain for HTN Fighter ordering methods at the higher levels

of the hierarchy by the priority we considered best. These

hierarchy levels are shown in Figure 2. Here, the top-most task

for the agent is always Act. This task can be decomposed by

six methods. After some observations of the agents submitted

to previous competitions, we noticed when an agent might

become vulnerable and for that reason, assigned the highest

priority to the first two methods Avoid Projectiles and Escape

From Corner. Similar considerations were made for the rest

of the methods. Even though all methods are important for the

game play, most of them represent single actions and do not

contribute to any complex behavior.

With the methods Use Combo and Knock-Back Attack,

however, the agent is supposed to show some strategic close-

range behavior following plans of multiple actions. These

methods were implemented to test whether it is possible to use

a planner in such a highly-dynamic game using the execution

system described later in this chapter. As already mentioned

in Section II-A, FightingICE allows for execution of combos

which consist of four attacks and give additional damage to

the opponent. Using the method Use Combo, the planner can

create a plan of up to four attack actions. Additionally, method

Knock-Back Attack decomposes the task Use Attack Skill and

consist of three sub-tasks: Knock-Back Attack which is used

twice and Knock-Down Attack. Following this strategy, the

agent keeps the opponent stunned (uncontrollable) for several

frames dealing more damage without getting hurt.

In contrast to the high levels of the hierarchy, we do not

predefine the order of low-level tasks in the hierarchy. Instead,

the methods of distinct attack actions are added dynamically at

the beginning of a game by checking each attack for its param-

eters. Furthermore, these methods are sorted by the damage

the corresponding attacks deal. That way, the preconditions

of the attacks with higher damage are checked first, giving

the character the chance to always execute the most powerful

attack applicable in the current situation. Adding methods

dynamically provides the following advantage: there is no

need to create a distinct planning domain for every character.

Since the approach checks for the actions’ parameters (which

are different for every character), it assigns the correct action

methods to compound tasks for every character.

For the same reason, the preconditions of primitive tasks

are defined in a generic way. Instead of predefining that, for

example, action STAND A should only be executed when the

opponent is within the distance of 40 units, the planner checks

whether the hit box of an action (which is provided by the

game for the current character) intersects with the opponent’s

hit box. This way, it is possible to use the same precondi-

tions for all attack actions accessing the corresponding action

parameters.

As already mentioned in section II-B, an HTN planner

usually has its own simulation model of the environment and

uses predefined effects of tasks to simulate changes in the

world state caused by these tasks. However, there is no need to

pre-define such effects for FightingICE. Instead, it is possible

to use the simulator provided by the framework and to simulate

plan tasks directly on copies of the frame data.

A big challenge when using a planner in such a highly-

dynamic real-time environment as a video game is the correct

execution of plans, while staying reactive to changes in the

environment. This is an even bigger challenge when knowl-

edge about the planning environment is delayed by 15 frames

as is the case for Fighting ICE. For that reason, the underlying

architecture should provide a possibility to interleave planning

and execution, recognizing plan failures and re-planning at

runtime as described in [22]. The architecture used in this

work contains two main loops the planning loop and the

execution loop. The execution loop is the same that is used by

every agent implemented for FightingICE. Here, in every game

frame, the agent controller gets frame data that is delayed by

15 frames from the game framework and provides Key Input

data in order for the agent to perform an action.

In the planning loop the agent controller queries the HTN

planner for a plan. This loop is only updated when a new

plan is required which happens either when the previous plan
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Fig. 2: High-level HTN for HTN Fighter.

ends (thus, is successfully executed) or when a plan failure

occurs. For the recognition of plan failures, the agent controller

performs the following two checks: first, it checks whether

the previous plan step was actually executed by the agent and

second, it checks whether the preconditions of the next plan

step still hold before executing it. If there is no plan failure, the

agent controller executes the next task from the plan converting

it into the corresponding Key Input data.

The check for the previous action is necessary in Fighting-

ICE especially due to the delay of 15 frames. Since the agent

controller does not have full knowledge about the agent’s and

the world state when executing an action, it cannot be certain

about the action actually being executed or aborted. Most

of the previous agents submitted to the competition use the

class CommandCenter(CC) provided by the game framework

to check whether a new command/action can be executed.

The CC returns false if the character is not controllable, for

example, when still executing a previous command or playing

a hit-animation. However, the delay of 15 frames is also valid

for the CC. Thus, as shown in Figure 3, the CC only recognizes

that the command STAND A which was sent in frame 1,

is executed after the delay and thus shows the character as

controllable for 15 more frames until frame 16.

This is not a problem for agents that make decisions in

every frame since they compute the optimal move for the

current situation and do not take into account their previous

or next actions. Thus, they are in no disadvantage even if they

send a command to the CC when the character is actually

not controllable and the command gets lost (frame 2 – 15).

However, this is obviously a problem for a plan execution

system that needs to execute plan steps in the correct order

and with the right timing. If the system relied only on the

feedback of the CC, it would try to send all the commands

of a plan one after another in the first frames having them

lost. To prevent this, we added an additional approach to the

execution system of HTN Fighter. Remembering the time the

last command was sent, the underlying architecture does not

send a new command in the 15 following frames (unless the

previous action is shorter than 15 frames). Only in frame 16,

it relies on the feedback of the CC. When the CC shows the

presumable end of STAND A in frame 19 and shows the agent

as controllable, does the controller send the next command

STAND B. This way, the correct execution timing is achieved.

However, if the character is hit in frame 8 and plays the

STAND RECOV animation, the CC gets this information only

in frame 23 and the command STAND B is still lost. After

frame 23 the hit is shown by the CC and, knowing the length

of the STAND RECOV animation, the CC knows that the

character is uncontrollable until frame 36. At this point the

actual character state and the information known by the CC are

synchronized again. In frame 36, the CC shows the character

as controllable again and this is where the agent controller

recognizes a plan failure because the previous action executed

(STAND RECOV) is different from the previous command

(STAND B). It re-plans and repeats the command STAND B

achieving the execution of plan steps in the correct order. The

following commands are executed with the correct timing and

order, since the character is not interrupted again.

IV. EXPERIMENTS AND RESULTS

In order to test HTN Fighter, we compared him in 100

games against each of the top three agents of the 2016

competition – Thunder01, Ranezi and MrAsh. Additionally, we

performed tests against the MCTS sample controller which all

three agents are based on. With every opponent agent, HTN

Fighter fought 50 games as player one and 50 games as player

two. Every game consisted of 3 rounds. The agents played

as character ZEN and started with 400 health points (HPs).

According to this year’s competition rules, a round ended

either when one of the agents had zero HPs (and thus lost

the round) or after 60 seconds. In this case, the winner of the

round was the agent with the higher number of HPs.

The results of the described experiments are shown in

Figure 4. As we can see, even with a quite simple planning

domain, HTN Fighter was able to win more than half of the

games against all opponents almost reaching two thirds against

the top three opponents of the last year’s competition.

In addition to the win rates of HTN Fighter, we recorded

the average number of combos performed by HTN Fighter and
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opponent AIs in 100 games (300 rounds).

each opponent.These values should show whether and how

often the agent was able to fully or partially execute plans of

multiple actions. As already mentioned, an agent can execute

a combo of 4 attacks. However, if his opponent executes

a combo-breaker attack after the second combo-attack, the

combo is canceled. This also happens if the agent does not

execute two successive combo-attacks within 30 frames.

Figure 5 shows the average numbers of chains of 1 – 4

combo-attacks executed by HTN Fighter and every opponent

AI throughout the 300 game rounds played against each other.

As expected, none of the opponents ever performed a full

combo (4 attacks) and there were only a very few cases when

the opponents hit 3 combo-attacks and slightly more chains of

2 attacks. Only MrAsh executed multiple chains of 2 combo-

attacks. For all four opponents, the number of only 1 combo-

attack is very high which means that in most cases, the agents

did not continue the combo after this attack and performed a

different action.

In contrast to the opponent agents, we can see that HTN

Fighter was able to perform full combos in some rare cases.

Also, the higher values for chains of 2 attacks show that

the agent tried to perform combos more often. However,

the visible difference in the numbers of chains of 2 and 3

attacks shows that in many cases the combo was aborted. This

happened because sometimes the opponents recognized HTN

Fighter’s intention to perform a combo and broke it with a

combo-breaker.Although, in most cases, having performed 2

combo attacks, the agent pushed its opponent back, so that

the preconditions of the third attack did not hold anymore. At

this point, a plan failure was recognized and a new plan was

created. This led to an interesting emergent behavior when

the new plan contained a sliding attack which knocked the

opponent down. In combination with the sequences created

by the method Knock-Back Attack described in section III,

the agent was able to keep the opponent uncontrollable for

multiple seconds which gave him a big advantage in close-

range fights.

We assume that such close-range attacks were the reason

why HTN Fighter performed worse against the MCTS agent

than against the other three opponents. Although the three

agents are based on MCTS, all of them implement additional

logic to approach their opponents. However, MCTS lacks this

logic and often stays far from its opponent. This gave a

disadvantage to the HTN Fighter which did not have a special

strategy for long-range fights.

Although the numbers of longer combo-chains are quite low,

they show that it is possible to create and execute plans of

multiple actions even in such a highly-dynamic environment

without having complete knowledge about it (due to the 15

frames of delay). Monitoring the plan execution progress and

interleaving planning and execution processes enabled us to

keep the agent reactive while following plans.

V. CONCLUSIONS AND FUTURE WORK

This work proposes a Hierarchical Task Network (HTN)

Planner that is used by the agent HTN Fighter in the Fighting

ICE game framework. Even though the game is very dynamic,

this work shows that planning and execution can be interleaved

in order to recognize plan failures and re-plan at run-time. The

agent shows the ability to execute plans of multiple actions and

to act deliberatively.

Although the planner uses a relatively simple planning do-

main, the agent already outperforms the MCTS controller and



(a) HTN Fighter vs. MCTS (b) HTN Fighter vs. Thunder01 (c) HTN Fighter vs. Ranezi (d) HTN Fighter vs. MrAsh

Fig. 5: The average number of successfully performed chains of combo-hits of the length 1 – 4 for each agent pair.

the top three opponents from the 2016 competition. We believe

that with a more detailed planning domain even better results

can be achieved with this approach. Thus, building a more

complex planning domain with better high-level strategies is

one of the main tasks for future work. Such strategies could in-

volve, for example, differentiating between the beginning, the

middle and the end of a game round and selecting behaviors

of different aggressiveness levels accordingly. Alternatively,

an agent could decide between different strategies depending

on whether the opponent prefers long-range or short-range

attacks. For now, we focused on close-range attacks.

Additionally, in order to improve the simulation process

during the planning, the opponent’s actions could be predicted

in a similar way to [2], [3]. Also, in order to execute waiting

or movement actions, the execution part of the system should

allow for parameterizing plan tasks, instead of just executing

an action once. For example, an agent controller should know

how far he should move or for how long he should wait.

Finally, there is scope for other techniques to be used

when creating the planning domain. For example, instead of

defining the order of HTN methods manually, it might be

detected through exploration. For this purpose, the Upper

Confidence Bounds might be used as is currently done in

many implementations of MCTS [4], [5]. Going further, the

preconditions of HTN methods [23], [24] or even the methods

themselves [25] might be adapted for the different game

characters through learning, for example, from re-play data

of other (human) players.
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