General Video Game for 2 Players:
Framework and Competition

Raluca D. Gaina
University of Essex
Colchester CO4 3SQ, UK
Email: rdgain@essex.ac.uk

Abstract—This paper presents a new track of the General
Video Game AI competition for generic Artificial Intelligence
agents, which features both competitive and cooperative real
time stochastic two player games. The aim of the competition
is to directly test agents against each other in more complex
and dynamic environments, where there is an extra uncertainty
in a game, consisting of the behaviour of the other player.
The framework, server functionality and general competition
setup are analysed and the results of the experiments with
several sample controllers are presented. The results indicate
that currently Open Loop Monte Carlo Tree Search is the overall
leading algorithm on this set of games.

I. INTRODUCTION

General Video Game Playing (GVGP) is a sub-domain
of Game Artificial Intelligence which aims to create generic
enough agents, capable of playing any given game, without
pre-computed game-specific heuristics, in possibly unknown
environments. It is meant to put complex algorithms to the
test, challenging their adaptibility to new situations. There
are general approaches such as deep reinforcement learning
combined with Monte Carlo Tree Search which can be engi-
neered to do brilliantly in some specific games (e.g. AlphaGo
in Go [1]). However, there is still a significant challenge in
designing general game plaing agents which can play well on
new games without requiring any extensive training time, and
without any human-designed game features, which is where
the need for GVGP agents arises.

In order to test these agents, there is the need to define a set
of constraints and specific challenges in order to make com-
parisons between algorithms and identify valuable advances in
the field. The General Video Game Al competition (GVGAI)
[2] provides just that, acting as an excellent benchmark that
offers multiple sets of real time stochastic games.

This paper describes a new track of this competition, the
Two Player GVGAI Competition (GVGAI2P), which is meant
to test agents directly against each other in more complex
problems, featuring both competitive and cooperative games
and therefore forcing agents to adopt various play styles and
techniques.

The rest of this paper is structured as follows: Section II
gives an overview of previous work carried out in this area,
Section III presents the framework underlying GVGAI2P,
Section IV describes the competition set up and Section V
introduces the sample controllers available with the framework

Diego Pérez-Liébana
University of Essex
Colchester CO4 35Q, UK
Email: dperez@essex.ac.uk

Simon M. Lucas
University of Essex
Colchester CO4 3SQ, UK
Email: sml@essex.ac.uk

and the results obtained from initial experiments. The paper
concludes with a summary of this research, an account of its
importance and future work.

II. RELEVANT RESEARCH

An internationally successful competition which had multi-
player games as its focus (e.g. Planet Wars in 2010, Ants in
2011) was the Google AI Challenge' which was organised
between 2009 and 2011 by the Computer Science Club of
the University of Waterloo. The framework used in this
competition and the way the agents were able to interact with
the environment were very similar to the GVGAI competition.
However, agents would still use game specific heuristics to aid
their decision making process. The users were supplied with
sample controllers and tools to test their controllers locally
or record replays. The way rankings were calculated for the
Google AI Challenge was using the Elo scoring system, which
provided rather slow feedback to users due to the large number
of participants.

Samothrakis et al. [3] considered this problem, as well as
that of selecting entries in a multi-player competition to play
against each other, together with ranking of entries according
to the skills demonstrated in matches played. To this extent,
the paper looks at the Ms Pac-Man vs Ghosts competition [4],
in which Al controllers for either Pac-Man or the group of
ghosts (or both) are submitted. The system pits against each
other opponents of the same type, taking into account the wins
and losses of each agent and analyses two different ranking
algorithms: Glicko and Bayes Elo. Based on the number of
games needed to determine ranks, the paper suggests that
Glicko, even as the less popular method, outperforms Elo
scoring. This is the reason behind using Glicko-2 ratings
for the GVGAI2P competition, which is an improved system
based on the original Glicko.

The General Game Playing (GGP) competition [5] is a
worthy mention for two player GVGP competitions, which
runs as part of the AAAI conference. It is made up of various
stages, including qualifiers, at the end of which the four best
entries are chosen to move on, followed by semifinals and
finals, where an overall winner is decided. This winning agent
plays against a human expert for a final test of its intelligence.

Uhttp://aichallenge.org/

Another unique aspect of this competition is that it aims to
find a controller generic enough to be able to play both single
and multi-player games. However, the games these agents are
tested on are turn-based strategic deterministic environments
(mostly board and puzzle games). This is one area where
GVGALI raises the challenge to real time stochastic games,
giving the agents a very limited time budget for decision
making.

Another notable contribution is the Geometry Friends Game
Al (GFGAI) [6] competition, running as part of the GECCO
conference. It has three separate tracks (single-player Circle,
single-player Rectangle and two-player Cooperation), but the
most relevant for the research described in this paper is the
last one mentioned. It is focused on a specific real-time game,
in which two characters have different abilities and aim to
solve puzzles, while being affected by simulated physics, in-
cluding attrition, gravity and dynamic elements, an additional
challenge for the agents. GFGAI provides the users with
only one sample controller which employs a Reinforcement
Learning algorithm and 5 levels of the game to locally test
their controllers. Competition entries are tested on 5 different
levels and ranked according to the time they took to complete
a level and the number of diamonds collected. This is similar
to the GVGALI usage of different training and test sets and the
elements taken into account when calculating an agents score.

There are certain aspects which improve a game Al com-
petition’s chances at being successful and Togelius offers an
overview on how to achieve this result [7]. He highlights the
benefits of this type of competitions, as not only an efficient
way to benchmark algorithms, but also useful in attracting the
interest of new researchers in the field. The factors discussed in
this paper that might influence the results of competitions in-
clude transparency and reliability, persistence and availability,
as well as making it easy for entrants to get started, or running
a discussion group to encourage peer technical support and
active involvement. Togelius suggests that an important aspect
is making sure that the competition evolves in the future in
order not to die out.

III. FRAMEWORK
A. Video Game Description Language

The GVGAI framework uses a Java port of the original
version of the Video Game Description Language (VGDL) [8]
written in python for general purpose game definition. VGDL
is a logic programming language inspired by the Game
Description Language (GDL) [9], which was used for GGP
competitions. However, where GDL relies on logical rules,
VGDL instead describes games by defining entities and the
interactions between them. Although this game description
is done through text files, the dynamics associated with an
entity (e.g. movement, abilities, behaviour) are programmed
separately within the framework.

The latest version of VGDL expanded for the purpose
of this research supports the definition of both single and
multi-player two dimensional games, with possibly multiple
levels associated with one game. The various sprites can be

defined and parameterized, as well as placed in the game
world through the level definition. The InteractionSet
(see Algorithm 1) section specifies rules for collision events
and finally, the TerminationSet identifies end of game
and winning conditions.

Algorithm 1 VGDL Definition 2 Player Sokoban

1: BasicGame key_handler=Pulse no_players=2
SpriteSet
3 hole >Immovable color=DARKBLUE img=hole
4 ground >Immovable img=water hidden=True
5 avatar >MovingAvatar
6: avatar] >img=avatar
7
8
9

avatar2 >img=alien
bbox >Passive
: box >img=box
10 boxin >img=city

11: LevelMapping

12: 0 >hole

13: 1 >box ground

14: . >ground

15: A >avatarl ground

16: B >avatar2 ground

17: InteractionSet

18: avatar wall avatar >stepBack

19: bbox avatar >bounceForward

20: bbox wall bbox >undoAll

21: box hole >transformTo stype=boxin
22: scoreChange=1,1

23: boxin ground >transformTo stype=box
24: scoreChange=-1,-1

25: TerminationSet

26: SpriteCounter stype=box limit=0 win=True,True

Only game description files are different for the 2 player
version, with the need to define two avatar sprites, which
may be of different types, as well as their interaction with
other game objects and with each other. The text file must
specify the number of players in the first line, which is 1
by default, to keep backcompatibility with the single player
games. Furthermore, the effects of each interaction (i.e. score
change, see Algorithm 1, line 21) and termination conditions
(winning or losing the game) should be specified for each
player. A game can end with one player winning and the other
losing, both players winning or both players losing.

B. State Observation and Forward Model

The game and level information written in VGDL can be
communicated to both AI and human players in visual or
contextual forms, encapsulated in game objects.

Al agents are provided with knowledge about the current
game state through a StateObservationMulti object, which
contains the current game step counter, a list of observations
(category, type and position of other objects in the game, such
as portals, resources, NPCs etc.), an observation grid and a
history of the events that have taken place in the game up until

the current game step. In addition, information is given on all
avatars in the game, including their game score and victory
state (win, loss or still ongoing) and their list of available
actions, as well as their avatar’s position, speed, orientation,
health points, resources and avatar type. All queries about a
specific avatar must pass the player ID in the method call.

A forward model (accessed via the advance method of the
StateObservation object) allows for possible future game states
to be simulated. An array of actions for all players must be
supplied to the advance method. The actual definition of the
game is not available to the controllers, therefore creating a
challenge in finding out aspects such as what the goal of the
game is, how it can be won, which NPCs are friendly and
which are enemies, etc.

C. Al Agents and Game Cycle

A game cycle can be divided into two main parts: the system
providing the current game state to the players and the players
returning one of the actions available (defined in the class
ontology.Types): No action (ACTION_NIL), move left (AC-
TION_LEFT), right (ACTION_RIGHT), up (ACTION_UP),
down (ACTION_DOWN) or a special action, that produces
different effects in distinct games (ACTION_USE).

Any controller designed for this competition has to extend
the AbstractMultiPlayer class and implement two methods: a
constructor, which is called once at the start of the game,
allowing the agents time for any initialisation necessary, with
an execution time limit of 1 second, and an act method, which
is to return a discrete action to be performed by the agent, in
under 40 milliseconds, called at every game step.

The controller gets disqualified if it exceeds any of the
time limits (with an exception to the act method, which, if
it completes in between 40ms and 50ms, then the agent is not
disqualified, but the default action ACTION_NIL is returned
instead). An instance of the StateObservationMulti object is
passed as an attribute to both of these methods, together with
a timer. Moreover, the player ID is passed to the agent in the
constructor.

D. Software
The structure of the GVGAI framework is described next:

o Package controllers. Contains all of the sample con-
trollers; more information about them can be found in
Section V.

o Package core. Contains all the game code.

— Package competition. Code necessary for running the
competition, including competition parameters.

— Package content. VGDL content classes.

— Package game. Core classes, including game execu-
tion, forward model and state observation.

— Package player. Contains abstract classes controllers
must extend (for both single and multi player agents).

— Package termination. Contains classes for the VGDL
termination conditions.

— VGDL classes and ArcadeMachine.java (used for
different framework execution modes).

o Package ontology. Contains all other Java code for VGDL
definitions of avatars, effects, sprites, physics and types.

o Package rools. Various classes and pathfinding code.

o Several classes for the various framework execution
modes, as detailed below.

Similar to the single-player version, a game may be played
in the GVGAI 2 Player framework in different modes, as
available in the class TestMultiPlayer.java. All of the options
offer the possibility of recording the moves played in a text file
for a later replay. The order of the controllers passed in these
methods indicate which one is the first and second player. The
different execution modes include playing as two humans, a
human against an Al, two Al players against each other in one
game, two Al players run in multiple games and levels or a
round robin tournament between two Al players.

IV. COMPETITION

All that is needed to get started with an entry for the
competition is a Java class called "Agent”, in a package using
the username registered on the website (submitted as a ZIP file
and including any other classes the controller might use, not
already included in the framework). No files can be written
from the controller’s directory and any files to be read should
use a relative path and be included in the submission.

All submissions are saved in a database. Execution, which
can be monitored by the users through their profile page, is
then split between two different servers: the GVGAI server
and a separate GVGALI 2 Player server.

The GVGAI server periodically checks if there are any
new controllers in the database, unzips and compiles them;
users are notified of any errors that might occur during this
process. If more than 2 controllers are available (successfully
compiled), the Glicko-2 system is used to select two of them
to play a round of games: in the training phase, the agents
will play 1 randomly selected level from each one of the 10
games in either the training set (public games - see Table I) or
the validation set (games hidden from the contestants), once
as the first player and again as the second player; for the final
rankings, the agents will play all levels of all games in the
test set (formed by a different set of 10 secret games), 5 times
each, with positions swapped for each match as well.

The GVGALI 2 Player server regularly checks if new runs
are queued and executes them, if it is capable of handling
more processes at that moment. It records the results of the
run and communicates the information back to the GVGAI
server, which calculates and updates the database with the
new Glicko-2 ratings, rating deviation and volatility of the
controllers that were involved in that particular run.

Glicko-2 is a rating system created by Mark E. Glickman
and based on the original Glicko system, in which all players
have a 3-tuple associated, which consists of a rating (r), a
rating deviation (RD) and a volatility (o). The default values
for an unranked player are (1500, 350, 0.06). The volatility
represents how likely is a player’s score to fluctuate, therefore
being lower if the player’s performance is kept at a constant
rate. The RD represents the confidence in a player’s rating,

Game

Description

Type

Action Set

Akka Arrh

The players have to defend a locked spaceship from aliens attacking it (2 points earned for killing an
alien). In order to win the game, they have to retrieve the key that unlocks the ship (earning 10 bonus
points) and get inside.

Cooperative

A0, AO

Asteroids

The players control spaceships in an area full of asteroids. Shooting an asteroid splits the target into
smaller asteroids, which are destroyed after 3 iterations (earning 3 points). Shooting the other player’s
ship kills the opponent and grants 10 points. Protective blocks can also be shot for 1 point.

Competitive

A0, AO

Capture
Flag

The level is divided into two areas, one for each player, containing the opponent’s flag. The goal of each
player is to retrieve their flag from the enemy territory and bring it back into their own, causing all flags
and avatars to respawn at their starting positions and earning 3 points. The players can also catch the
opponent when they are in their own territory to gain 2 points if the enemy has their flag or 1 point
otherwise, in addition forcing positional reset.

Competitive

Al, Al

Cops N
Robbers

One player takes the role of the robber, who has to collect all the diamonds in the level (earning 1 point
per diamond collected). The other player becomes the cop, who has to catch the robber before all the
diamonds are gone (gaining 4 points if successful). In case of timeout, both players lose the game.

Competitive

Al, AO

Gotcha

One player has to chase the other, the game resulting in a win for the first player if they catch the
opponent, or the other way around if the second player manages to avoid capture until time runs out.
There are NPCs blocking the players’ movement and safe areas where the pursued agent can hide for a
limited amount of time, after which the safe spots are destroyed.

Competitive

Al, Al

Klax

The players compete to get the highest score by collecting differently coloured blocks that fall from the
sky. The first time a player collects a block, they are assigned the block’s colour and gain 2 points from
thereon by catching blocks of the same colour. 1 point is awarded for catching blocks of the opponent’s
colour. All of one player’s points are lost if they catch a block of a colour unclaimed by either avatar.

Competitive

A2, A2

Samaritan

One player has the goal of crossing a portal to another world, while the other has to prevent that from
happening until timeout, by either blocking the path or using their special action on the opponent, which
results in the first player’s position to be reset. If the second player falls into a portal, both players lose.

Competitive

Al, AO

Sokoban

The players push boxes into predetermined special locations. 1 point is awarded for both players for each
box successfully placed in the right place, or removed if the boxes are moved out of a correct location.
Both players lose on timeout and both players win if all of the boxes have been correctly placed.

Cooperative

Al, Al

Steeplechase

A racing game in which the players compete to reach the finish line. There are obstacles in the level,
which can be destroyed with a melee weapon, and one gem hidden in one of the boxes which grants
1000 points to the player that collects it.

Competitive

A0, AO

Tron

The players compete in an arena, constantly moving (ACTION_NIL still makes the avatar move forward),
only able to turn left or right and leaving solid trails behind them. If they hit either a wall or a trail left
behind by any of the avatars, the player loses and the opponent wins. Both players lose on timeout.

Competitive

A3, A3

TABLE T

TRAINING SET GAMES. ACTIONS LEGEND: AQ: ALL MOVES; Al: ONLY DIRECTIONAL; A2: LEFT AND RIGHT; A3: ALL (CONSTANTLY MOVING)

higher if the player has not played in a while (a greater change
in rating could be expected) and it can be used to report
a player’s rating as an interval for more accurate analysis.
These values are calculated at the end of a rating period, which
consists of several games played between different users.

This system has been adopted for the GVGAI2P compe-
tition with several modifications. As the agents are tested
on several different games, each of them are appointed a
game specific 3-tuple, which would be averaged for an overall
approximation of performance. With the runs being relatively
self contained, all of the values are updated for each pair
of controllers after playing all matches on one game. As the
Glicko-2 algorithm would result in the rating deviations slowly
decreasing, the rating period was simulated by increasing the
RD values of all the controllers which were not part of those
matches.

In addition, after observing the sample controllers test the
system, it became clear that the default values were not
appropriate for all of the games, as the average performance
of the controllers was better in some games and worse in
others. This situation raised the need of using game specific
default ratings, which are periodically recalculated as the
average ratings in each particular game. Moreover, a minimum
rating value was introduced as 0, in order to prevent scores
from becoming very small negative values in games where

controllers hardly win (e.g. Sokoban).

The Formula-1 system is used to award points in each game,
depending on the ranking according to the Glicko rating (the
number of points awarded are, in order, from first to last: 25,
18, 15, 12, 10, 8, 6, 4, 2, 1 and O for all the other entries).
The points in all games are summed up in order to determine
a controller’s overall performance and rank.

V. SAMPLE CONTROLLERS
This section describes the sample controllers currently avail-
able within the framework.
A. DoNothing

This controller is the most basic one. It always returns
ACTION_NIL, therefore it does not perform any actions during
the game.

B. SampleRandom

This is another very basic controller. It does not require
any information processing, instead selecting a random action
from those available at every game step.

C. SampleOneStepLookAhead (OneStep)

In single player games, the One Step Look-Ahead controller
analyses all of the actions available at every game step and
picks for execution that which leads to the next best state.

The simple heuristic used for game state evaluation aims to
minimise the distance to NPCs and portals, minimise the
number of NPCs still in the game and maximise score, as
well as giving a great bonus for winning the game, or a great
penalty for losing.

In multi player games, the behaviour of the controller is
quite similar, using the same heuristic for approximating state
values. However, it now needs to pass an array of actions,
for all players in the game, to advance the forward model
and reach these new possible states which would allow it to
evaluate actions. While the agent still iterates through all the
actions available to itself, the action picked for the opponent
in each case is calculated by another method. This method
returns a random action out of those available to the opponent,
which they would make assuming the current player performs
ACTION_NIL without resulting in them losing the game.

After all of the agent’s actions are evaluated, the one with
the highest reward is chosen for execution.

D. SampleGA

This controller uses a Rolling Horizon Evolutionary Algo-
rithm (RHEA) [10], which takes advantage of the forward
model to simulate possible future states of the game and
creates plans of a pre-defined number of actions. These plans
are considered the individuals in the population evolved by the
algorithm. Due to the real-time restriction of the games, RHEA
only generates one new individual every iteration, instead of an
entire population. When the algorithm reaches the maximum
number of iterations or has used up all the time in its budget,
it returns the first action of the individual resultant after the
evolutionary process.

The fitness of each individual is calculated by the value
of the state reached after executing all the actions in one
individual. The heuristic used to evaluate a game state aims to
maximise the score of the current player. In addition, a large
bonus is awarded if the player wins or the opponent loses and
a large penalty is applied if the contrary is true. As in multi
player games, an array of actions for all players is required to
advance the forward model, this sample controller assumes the
opponent will always do a random move out of those available.

E. SampleMCTS

Monte Carlo Tree Search (MCTS) [11] is a Tree Search
algorithm, made up of four main steps. The first step is
Selection, during which a non-terminal node is chosen using
the tree policy, out of all the nodes which have not yet
been fully expanded. The sample controller uses UCB1 (see
Equation 1) as the Tree Policy, with a constant C' of V2, to
balance between exploration and exploitation.

lnN(s)} 0

N(s,a)

a* = argmax < Q(s,a) + C
a€A(s)

The second step is Expansion, which is focused on adding
a new child of this node to the tree. A Monte Carlo (MC)
Simulation follows, in which actions are picked uniformly at

random (Default Policy) from the newly-added child until the
end of the game or a pre-defined depth has been reached.
Finally, during Back-propagation, the value of the state
obtained at the end of the MC simulation is used to update
the values of N(s), N(s,a) and Q(s,a) of all visited nodes, up
to the root of the search tree. The heuristic used to evaluate a
game state maximises the current player’s score, adding a large
bonus for winning the game, or giving a penalty for losing.
In the multi player version of MCTS, in the array of
actions for all players required to advance the forward model,
the opponent’s move is assumed to be random. It is worth
highlighting the simultaneous nature of the games, as opposed
to turn-based: each tree level contains states derived from
both players executing a move at the same time, instead of
alternating between the first and second player’s actions.

F. SampleOLMCTS

Open Loop Monte Carlo Tree Search (OLMCTS) [12] is
an MCTS variation, which does not store the game state
in the nodes of the trees, instead using the forward model
to reevaluate future states at each iteration. This method is
particularly efficient in GVGAI due to the stochastic nature
of the games, which means that storing game states in the
nodes of the tree would result in possibly inaccurate results and
wrong assumptions to be made based on previously different
scenarios. However, this approach does face the problem of
having to reach future states using the forward model more
often. This controller uses the same heuristic, policies and
opponent action selection as the sample MCTS agent.

G. Performance of sample controllers

The Glicko-2 system was used to compute the performance
of the sample controllers. They played two matches on a ran-
domly selected level of all 10 games of the training set (with
the order of the controllers reversed in the second match). The
results obtained were processed using the Formula-1 system to
rank the controllers in each game according to their Glicko-2
ratings (as described in Section IV). The points are summed up
across all games to obtain the rankings presented in Table II.
The rankings reached a stable order after 17 runs (340 games)
in less than 1 hour.

The results indicate that OLMCTS is clearly the best out of
the sample controllers. A possible line of further development
could be focused on improving upon this algorithm, stating
with a better than random assumption on the opponents
actions. Similarly, there is clear room for improvement in the
GA controller as well.

These rankings were verified with a round robin tournament
between all sample controllers on a similar set up to the
Glicko-2 system (10 training set games, 1 random level,
each match played twice). However, assuming more entries
will be added to the competition, recomputing the rankings
using the Glicko-2 system would be faster than the round-
robin alternative, for which m x Z—ﬂ more games would be
necessary, where m is the last number of games played and n
is the current total number of participants in the competition.

Controller ﬁkka Asteroids Capture Cops N Gotcha Klax Samaritan | Sokoban Steeple Tron Total
rrh Flag Robbers chase
Sample 7.45% 91.49% 63.85% 50.00% 77.66% 89.36% 63.82% 0.00% 8.51% 98.94% 55.10%
OLMCTS | (25,0) | (25,2169) | (25,830) | (25,67) | (25,1903) | (18, 1582) | (15,910) (25, 0) (18, 0) | (25,1794) (226)
Sample 5.43% 69.57% 58.70% 41.30% 64.13% 80.43% 59.78 % 0.00% 7.60% 38.04% 42.50%
MCTS (18, 0) | (18, 1977) | (18, 644) (18, 0) (18, 1710) | (25, 1605) | (25, 1000) | (25, 0) (15,0) | (18, 1424) (198)
OneStep 7.45% 31.37% 3431% 17.65% 32.10% 43.33% 52.94% 0.00% 100% 45.09% 36.47%
25,0) | (15, 1672) | (15, 620) (8, 0) (12, 1371) | (12, 1185) | (10, 817) | (25,0) | (25, 858)| (15, 1414) (162)
Sample 0.00% 40.42% 56.38% 32.98% 52.12% 48.93% 41.48% 0.00% 6.38% 47.87% 32.67%
GA 12, 0) | (12, 1636) | (12, 587) (15, 0) (15, 1405) | (15, 1549) | (18, 1000) | (25, 0) (12, 0) | (10, 1270) (146)
Do 0.00% 23.96% 26.67% 16.67% 42.09% 18.89% 12.22% 0.00% 0.00% 51.11% 21.55%
Nothing (12, 0) | (10, 1494) | (10, 472) (12, 0) (10, 1338) | (10, 728) (8, 293) (25, 0) (8, 0) (12, 1296) (117)
Sample 0.01% 45.56% 25.00% 17.71% 28.73% 10.42% 52.08% 0.00% 2.08% 19.79% 18.23%
Random (15, 0) (8, 1352) (8, 437) (10, 0) (8, 1287) (8, 563) (12, 845) (25, 0) (10, 0) (8, 1104) (112)
TABLE IT

SAMPLE CONTROLLERS RANKED ON THE TRAINING SET USING THE GLICKO-2 SYSTEM. PERCENTAGE OF GAMES WON ARE SHOWN FIRST, FOLLOWED
BY F1 POINTS AND GLICKO-2 RATING PER GAME IN BRACKETS.

VI. CONCLUSION

This paper presented the expansion of the General Video
Game AI Competition to a Two Player Track, which will
challenge general Artificial Intelligence agents in new and
interesting ways. As the games in the framework vary in
nature, the agents would have to adapt to both competitive
and cooperative environments, as well as interacting and
coordinating effectively with other agents in order to succeed.
Although it may seem like a difficult task, the benefits of
agents succeeding in this competition would outweigh this
aspect, as they could make use of shared experiences to
accelerate and improve learning.

To conclude, the rankings of the sample controllers on
the training set suggest OLMCTS to be the best. However,
One Step Look Ahead exhibits particularly good behaviour
in games such as Steeplechase, where its heuristic focused
on portals allows it to outperform tree search techniques, for
which the search space is too large to produce good results.
Game specific features will be further explored to continue the
work presented in this paper, together with the possibility of
automatically evolving such features. [13] [14]

Future work could also be focused on the competition itself,
not only by increasing the number of games for testing agents,
but also by exploring different competition configurations. A
first option would be having more than two players taking
part in a single game, each controlled by an individual agent.
Optimisations for execution times should be considered in this
case, but this scenario could lead to controllers learning to
adapt to a community, work together to solve larger scale
problems, elect leaders, eliminate enemies, form alliances,
etc. This could potentially create a significant breakthrough
in general group intelligence, while individuals still give more
weight to their own different goals and strategies.

Furthermore, in keeping with the larger number of players
or characters in a game, one agent could take control of a
group of them, instead of only one (e.g. tactic games). This
would pose a vastly different challenge, as multi objective
optimisation and task decomposition methods might come into
play, with the agents having to manage the individuals part of
their group and any resources available, as well as focusing on

the major goals and still acknowledging other player presences
in the game, all in the same multi-game general setting.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the Game of Go with Deep Neural Networks and Tree
Search,” Nature, vol. 529, no. 7587, pp. 484489, 01 2016.

D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. Lucas,
A. Couetoux, J. Lee, C.-U. Lim, and T. Thompson, “The 2014 General
Video Game Playing Competition,” in IEEE Transactions on Computa-
tional Intelligence and Al in Games, vol. PP, no. 99, 2015, p. 1.

S. Samothrakis, D. Perez-Liebana, P. Rohlfshagen, and S. M. Lucas,
“Predicting Dominance Rankings for Score-based Games,” in IEEE
Transactions on Computational Intelligence and Al in Games, vol. 8,
no. 1, 2014, pp. 1-12.

P. Rohlfshagen and S. M. Lucas, “Ms Pac-Man versus ghost team CEC
2011 competition,” in Proceedings of IEEE Congress on Evolutionary
Computation (CEC), 2011, pp. 70-77.

M. Genesereth, N. Love, and B. Pell, “General Game Playing: Overview
of the AAAI Competition,” in Al Magazine, vol. 26, no. 2, 2005, p. 62.
R. Prada, P. Lopes, J. Catarino, J. Quitrio, and F. S. Melo, “The
Geometry Friends Game AI Competition,” in IEEE Conference on
Computational Intelligence and Games, 2015, pp. 431-438.

J. Togelius, “How to Run a Successful Game-based AI Competition,”
in IEEE Transactions on Computational Intelligence and Al in Games,
vol. 8, no. 1, 2013, pp. 95-100.

T. Schaul, “A Video Game Description Language for Model-based
or Interactive Learning,” in Proceedings of the IEEE Conference on
Computational Intelligence in Games, 2013, pp. 193-200.

N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth,
“General Game Playing: Game Description Language Specification,” in
Technical Report LG-2006-01, Stanford University, Stanford, CA, 2006.
D. Perez-Liebana, S. Samothrakis, S. M. Lucas, and P. Rolfshagen,
“Rolling Horizon Evolution versus Tree Search for Navigation in
Single-Player Real-Time Games,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), 2013, pp. 351-358.
C. Browne, D. W. E. Powley, S. Lucas, P. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A Survey of Monte
Carlo Tree Search Methods,” in IEEE Transactions on Computational
Intelligence and Al in Games, vol. 4, no. 1, 2012, pp. 1-43.

D. Perez-Liebana, J. Dieskau, M. Hnermund, S. Mostaghim, and S. M.
Lucas, “Open Loop Search for General Video Game Playing,” in
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), 2015, pp. 337-344.

S. M. Lucas, S. Samothrakis, and D. Perez, “Fast Evolutionary Adapta-
tion for Monte Carlo Tree Search,” in EvoGames, 2014.

D. Perez, S. Samothrakis, and S. M. Lucas, “ Knowledge-based Fast
Evolutionary MCTS for General Video Game Playing,” in IEEE Con-
ference on Computational Intelligence and Games, 2014, pp. 1-8.

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

