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Abstract—A novel evolutionary algorithm, which can be viewed
as an extension to the simple, yet effective, approach of the
Random-Mutation Hill Climber (RMHC), is presented. The
algorithm addresses the shortcomings of RMHC and its multi-
individual parallel version through the introduction of a penalty
term into the fitness function, which penalizes individuals in the
population for being too similar, hence maintaining population
diversity. The performance of the algorithm is evaluated on the
deceptive trap and a set of SAT problems, comparing them to the
Crowding EA. The results show that at a small cost of solution
speed on simpler problems, the algorithm gains better capabilities
of dealing with the issues of local maxima.

I. INTRODUCTION

Evolutionary Algorithms (EA) are known as some of the
most generally applicable problem solvers in many different
fields of research [1]. This reputation stems from their problem
agnosticism, only requiring the knowledge of the solution
structure and the ability to measure how good a specific
solution is. With real-life evolutionary processes being the
inspiration for the original algorithm concepts, they attempt
to mimic how reproductive animals adapt to their environment
over a number of generations through heredity and variation.

More specifically, the first incarnation [2] of the idea,
from which many other algorithms were built upon, holds
a number of possible chosen problem solutions—a population
of individuals. Iteratively replacing the individuals with their
better performing mutations then, in theory, produces higher
and higher scoring individuals, or in other words, problem
solutions of constantly increasing quality. In practice, however,
this is commonly not the case in deceptive problems. Problems
for which one would use a search algorithm tend to have
vast amounts of possible solutions, with only some solutions
being of noticeably higher quality than others, leading the
population into suboptimal locations. This is known as the
algorithm getting stuck at a local fitness-maximum of the
search space, i.e. a point in the search space from which all
minor perturbations decrease its fitness score.

Over the last few decades, many publications addressing
the problem of local maxima within evolutionary algorithms
have been produced. One of the proposed ideas was to
maintain separate groups of individuals, allowing them to
occasionally cross-over, which has been proven effective for
some problems at the cost of additional parameter design. The
contribution of this paper is an algorithm which enforces the
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Algorithm 1 RMHC

Require: individual ¢
1: while end condition not met do
2: mutant < Mutate(7)

3 if Fvaluate(i) < Evaluate(mutant) then
4: 1 < mutant

5: end if

6: end while

separation of groups automatically, by having a population of
individuals who prefer to explore areas further away from their
brethren. This preference is enforced through the existence
of a repelling penalty function, which is designed reduce the
fitness of individuals that are too similar to each other. The
algorithm is general enough to allow tweaking for specific
needs, and can continue improving given prior knowledge or
more computational power.

II. RELATED WORK

The Random-Mutation Hill Climber [3] (RMHC) is one of
the simplest and oldest evolutionary algorithms. Pseudo-code
for RMHC is given in Algorithm 1. The algorithm works
by iteratively altering (mutating) a single solution slightly,
and whenever the alteration yields an increase in fitness, the
mutation is kept; otherwise the mutation is discarded. As
usual in EAs, the end condition is either finding the optimal
fitness value or, more likely, reaching the evaluation limit.
An extension of RMHC is Parallel RMHC - population of
RMHC behavior individuals (similar to parallel hill-climbing
in [4]), which is the same as RMHC, but instead of improving
just one individual, it maintains a population of individuals.
The concept should not be confused with the application of
penalty functions in constraint optimization problems, such
as [5], where a penalty is applied for individuals entering the
non-feasible region of a constraint optimization problem. The
proposed algorithm is referred to as the Repelling RMHC for
the remainder of this paper.

The problem of ensuring population diversity has been
previously approached in a number of ways. They include
niching [4]. which divides the population of individuals into
groups and allows reproduction only or primarily within those
groups. Another alternative proposed is tabu search [6], which



Algorithm 2 Crowding

Algorithm 3 CrowdingSelect(child)

Require: Evaluation number en
Require: Tournament size ts

1: genomes < gn random individuals

2: for 1 to en/2 do

3: parentA < TournamentSelect(ts)
parentB < TournamentSelect(ts)
childA, childB + CrossOver(parentA, parentB)
childA < Mutate(childA)
childB + Mutate(childB)
Evaluate(childA)
Evaluate(childB)
10: CrowdingSelect(childA)
11 CrowdingSelect(childB)
12: end for

B A A

prohibits individuals from mutating into previously explored
configurations, thus forcing them to explore unseen areas of
the fitness landscape. Crowding [7] maintains diversity using
an individual replacement strategy, which favors the offspring
who are the furthest from the current population. These
techniques and many others [8] suffer from the drawbacks of
requiring large amounts of memory, significant foresight from
the designer or the reliance on the population initialization.

To gain insight into the quality of the introduced algorithm
it needs to be compared against a known existing approach
attempting to solve the same problem, which in this case
is finding the optimal fitness via population diversity main-
tenance. The chosen algorithm to be compared against the
Repelling RMHC in the select problems is the established
Crowding algorithm [7], focused on ensuring the population
is diverse through a steady state, tournament selection based
approach. Generic cross-over procedure is used to create new
individuals, which then replace other population members,
which are the most similar, measured using a defined distance
function. The version of the algorithm parts used is shown
in Algorithms 2 and 3, which are reproduced from [9]. The
TournamentSelect(N) function returns the highest fitness
individual from a subpopulation of N individuals. Along with
the distance function, the algorithm requires the specification
of the crowd and tournament sizes.

A conceptual breakthrough in the EA field was Novelty
Search [10], which strayed away from measuring the fitness
of an individual directly to how it performs a certain task,
but instead looking at how differently does it do it in com-
parison to the others within the population. Over time, it
was established that its lack of generality, due to the need
for a designer-crafted Quality Diversity function, hindered the
concept as the selection of this function could be a problem no
less difficult than the original [11][12]. Unsurprisingly, novelty
search uses some type of diversity maintenance EA to ensure
the difference between the individuals, such as the improved
niching algorithm of MAP-Elites [13]. Thus, improvements of
the diversity-maintenance methods at a lower level will lead
to higher performance on more complex problems.

Require: Population genomes

Require: Crowd Size cs

Require: Large number min
1: for 1 to cs do

2: j + Rand(|genomes|)

3: distance < Distance(child, genomes|[j])
4 if distance < min then

5: min < distance

6 replacedIndex < j

7 end if

8: end for

9: genomes|replacedIndex] < child

III. APPROACH

The algorithm introduced in this paper is called Repelling
RMHC. It can be seen as an extension to the Parallel version of
RMHC; extended to include repelling functions, which are de-
signed to push individuals away from each other. Similarities
can be drawn to few of the many existing niching methods [4].

In short, if the fitness function of an individual 7 in the
RMHC algorithm can be defined in (1), then (2) shows the
individual fitness in Repelling RMHC, where the individual
subscript is the evaluation sequence number of the individual
in the population, and Fwval, Fit and Dist are short for
Evaluate, Fitness and Distance, respectively. The evalu-
ation, as usual, depends on the specific application and the
distance measure between two individuals has to be chosen
prior to algorithm exploitation.

F’it(iN) = E’l)CLl(iN) (1)
N-1

Fit(iy) = Bual(ix) — Y Penalty(Dist(in,in), Fit(i,))
n=1

(2)

A. Concept

The Repelling RMHC concept is inspired by the human
rewarding behavior when applied to the appreciation of nov-
elty, which is most obvious in the art world. Taking music
as an example, once an artist creates a novel type of music
arrangement, which is appreciated by many, all of the credit
tends to go to that single artist and imitators get far less
recognition, not to mention that plagiarism only generates
infamy, i.e. negative recognition. More generally, the process
can be visualized as a local peak of a fitness landscape of
music, which the artist has reached and is now rewarded with
recognition—the fitness equivalent. New individuals reaching
the same hill are no longer rewarded due to the peak already
being occupied, naturally encouraging exploring areas away
from the ones already taken.

Translating this type of landscape navigation to an evolu-
tionary algorithm requires the individuals to have the ability
to find peaks as well as to feel the pressure to stray away from



ones already found by others. The peak seeking is covered by
the default RMHC and the curiosity half is done by having
each individual of the RMHC algorithm exhibiting individuals
emit a predefined repelling function, modifying the fitness of
all other individuals - applying a penalty for being nearby.

B. Repelling RMHC

Fig. 1 visualizes the concept of repulsion as applied to an
example optimization problem. The goal of this problem is
to find a 10-bit string configuration with the highest fitness.
The true fitness function curve is shown in light blue. It is
a function dependent on the number of active bits, i.e. bits
whose value is set to 1. The function has two fitness peaks at
2 and 7. Therefore a string with 7 active bits, regardless of
their order, will have the optimal fitness.

In this example, a population of just two individuals is
considered. Their genomes are initialized as uniformly random
10-bit strings. Assume the first randomly generated individual
has 6 active bits, and corresponding fitness 1.25 (as indicated
by the light blue continuous curve). By design, the individual
will then repel the subsequently evaluated individuals away
from its exact genome configuration. That is, upon evaluation
of the second individual, its fitness value will be reduced from
the true value by the repelling force of the first individual. The
repelling force, in this case, is represented by a (Gaussian)
penalty function, shown as a dashed orange line with its peak
at the genome location of the first individual.

Concretely, if the second individual happened to also have
6 active bits, it would receive the fitness of 0 due to the
superimposed reduction. The dotted black curve shows the
updated fitness landscape of the second individual, which
is equal to the orange dashed curve subtracted from the
continuous light blue line. Note that the updated landscape
now has its global optima at a different location, which is the
core feature of the algorithm. The reductions for the following
individuals would stack recursively. It is also important to
notice, that the distance measure in this example was chosen
to correspond to the fitness function, which in useful cases
tends to be unknown, specifically to aid the explanation.

The way the superimposed penalty function is used in the
algorithm can be likened to the approach used in [14], where
the novelty of an individual and the fitness score are given
weights, which are then adjusted to find the ideal ratio for the
specific problem. Although related, they are not alternatives
to each other and could possibly even be combined, as the
weights in this case could control the strength of the penalty
function.

The convenient effect of Repelling RMHC is that the impact
of the algorithm can be readily scaled as desired, with one
extreme finding the closest local peak and the other - spreading
out across the fitness landscape as if it were flat. Intuitively, if
the fitness landscape were to be completely flat, with any and
all genomes receiving the same fitness value, the algorithm
would converge to a uniformly distributed static population
with equal distances between each other, each maximizing the
penalized fitness functions. The statement holds only under the
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Figure 1: Example fitness function and associated penalty for
an example fitness function and population of two individ-
uals. The black curve (dotted) is the orange curve (dashed)
subtracted from the blue curve (solid).

assumption that the equal distance spread is achievable taking
into account the population density and landscape granularity.

C. Repelling function

Depending on the fitness landscape of a select problem,
some choices of the repelling function will consistently pro-
duce higher quality results than others. It is possible that in
some cases, due to this choice being poor, the optimal solution
might appear as suboptimal due to the landscape morphing.
On the other hand, the goal of the algorithm is not to find the
optimal solution, but rather maintain a population of different,
yet still fit individuals. Regardless of the chosen function and
any of the other parameters, if the fitness landscape turns out to
be mostly flat with sparse bumps, the repelling nature will have
a higher chance of finding those bumps when compared to
other local search methods due to its uniform spread property.

It is also important to note that in the cases of decaying
repelling functions, such as the Gaussian function, care should
be made with negative fitness values - pushing others away
from negative fitness might cause attracting them instead,
which is the reason for the experiments using functions with
the minimum fitness being 0.

D. Distance measure

Similarly as with the repulsive function type, the distance
measure between two individuals can alter the effectiveness
of the algorithm drastically. It can be argued that, much like
the choice of Quality Diversity function in Novelty Search
variations, the search for the optimal distance measurement
type is possibly a problem of no less difficulty as the one being
solved. However, a case can also be made for the argument that
the distance measure is only polish of the core behavior. Thus,



Algorithm 4 Repelling RMHC

Deceptive Trap function

Require: Number of evaluations g:
Require: Population size gn

1: genomes < gn random individuals

2: for 1 to gi do

3: previous <— empty list of genomes

4: for all g in genomes do

5: mutant < Mutate(g)

6: fitness < Evaluate(mutant)

7: for all p in previous do

8: dist + Distance(g,p)

9: penalty < Penalty(dist, Fitness(p))
10: fitness < fitness — penalty
11: end for
12: if Flitness(g) < fitness then
13: g <+ mutant
14: end if
15: previous < previous U g
16: end for
17: end for

the Euclidean distance between genomes, as opposed to the
behavior of the phenotypes, is a reasonable choice, irrespective
of the problem at hand.

E. Implementation

Algorithm 4 shows the pseudo-code implementation of the
Repelling RMHC. It requires the values of number of individ-
uals (genomes) to be used, number of generations, the single
bit mutation rate, and the definition of the Penalty(distance)
and Distance(genomeA, genomeB) functions. The algo-
rithm evaluates the objective fitness of each individual and
then reduces this fitness by a penalty based on the distance
from this individual to each one of the previously evaluated
in that same generation.

An important deviation from the traditional EAs - which
introduce new individuals into the population through replac-
ing and recombination of the existing ones (a feature of the
Crowding algorithm) - is that in the proposed approach the
individuals are never removed from the population. The focus
is shifted away from collecting the good parts of existing
individuals to steering them into fit locations themselves.

IV. EXPERIMENTAL SETUP

For all experiments the single bit mutation chance was
equal to m, the distance function was the Euclidean
distance, defined by (3), where a,, is the n’th bit value of in-
dividual a. The repulsion function was the Gaussian function,
shown in (4) with 0 = genomeSize and p = 0, exponentially
reducing the penalty as the distance between individuals got
larger. Specifically, the penalty for each individual used is
defined by (5); the Penalty value is used to reduce the
true fitness returned by Fvaluate. When using the Crowding
algorithm, the tournament size as well as crowding size were
set to 2. The value was experimentally found to produce
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Figure 2: The deceptive trap function for a 10-bit string

the best results when using the relatively small population
sizes. The individual genome values were generated using
random values from a uniform distribution. To evaluate the
performance of the Repelling RMHC, two distinct testbeds
were used.

DiStCaneEuclidean(av b) = 3)
Gaussian(d) = exp S
N-1
Penalty(in) = Z Fit(i,) x Gaussian(Dist(in, i,)) (5)
n=1

A. Deceptive trap function

One is a deceptive trap function, from a family of functions
commonly used to showcase the vulnerabilities of EAs [15].
It has the property of positioning the optimal fitness value a
single mutation away from the worst value, misleading the
conventional EAs to the worse overall solution. The bit string
version of the problem is presented in Fig. 2. For this problem
the genome size (number of bits) was set to 10, population
sizes of 1,3,4,5,8 and the performance was averaged over a
100 runs of 1000 evaluations.

B. SAT

The second comparison problem was chosen to be the
common NP-hard clause satisfiability problem (SAT), the
state of the art in which is usually lead by stochastic local
search algorithm with diversity maintenance [16]. The problem
requires to find a suitable string of bits, which have to satisfy as
many conjunctive clauses of disjunct bits. The set of problems
used was the entire Random-3-SAT Instances and Backbone-
maximal Sub-instance set from SATLIB benchmark problem
library!, which contains 500 instances of problems with 429
clauses of 100 variable 3-SAT problems, all fully satisfiable.
The fitness function is equal to the number of clauses satisfied
by a potential solution, 429 being the optimal. For evaluation

Thttp://www.cs.ubc.ca/ hoos/SATLIB/benchm.html
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Figure 3: Algorithm comparison on the deceptive trap func-
tion. Legend numbers indicate the population size used.
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each one of the configurations were run 10 times on each
problem for an average performance on each evaluation within
the evaluation budget of 4000. The configurations consisted of
population sizes of 1, 4 and 10.

V. RESULTS AND DISCUSSION

Fig. 3 shows the performance comparison of the RMHC
and Repelling RMHC algorithms applied to the 10-bit version
of the deceptive trap function. RMHC here is not capable
of finding the optimal value of 10, whereas the averaged
Repelling RMHC curve keeps climbing to the optimal value
and finds it after at most 700 evaluations in the 4 individual
case, more in others. Whereas, Fig. 4 presents the comparison
being made across the suite of SAT problems using different
population sizes. Note that since the number of evaluations
is kept constant, the larger population sizes imply proportion-
ally fewer individual iterations for its members. The legend
indicates the curve algorithm and the individual number used.
Fig. 5 shows the Crowding algorithm performance under the
same conditions. Note the different y axis scales.

A. Trap function

The Repelling RHMC is shown to be capable of overcoming
the local maxima in the deceptive trap function as indicated by
Fig. 3 with any number of individuals larger than 2. Using 3
individuals (the REP3 curve), the algorithm finds the optimal
solution 50% of the time after 400 evaluations, 100% when
using 4 and given 700 evaluations. This data shows that a
population of repelling RMHCs outperforms a population of
non-interactive where on deceptive trap-like function.

From the statistical point of view, there are 2°** combi-
nations that can be evaluated - 1024 in the case of 10 bits.
That is randomly guessing the solution has a ﬁ chance of
getting the optimal solution and if RMHC does not get it on
initialization, it is doomed to converge to the suboptimal value
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(disregarding the even smaller chance of mutating into the
desired configuration). The Repelling RMHC is not repelled
by the low probability, because as soon as one individual starts
moving towards the suboptimal value, the others attempt to
move away, eventually finding the optimal value in less than
1024 evaluations in the experiment cases.

In none of the experimental cases (not shown), the Crowding
algorithm was capable of converging to a higher fitness value
than the suboptimal 9. This behavior can be readily attributed
to the reliance on crossover. Crossover is known to be bene-
ficial only when the individuals carry parts of a more desired
solution in their genomes [17]. The required modularity of
active bits is absent in the second best solution.



B. SAT

Considering the Repelling RMHC, the performance ben-
efit in the trap function is paid for using the performance
drop seen in the evaluation of the SAT set in Fig. 4. In
this figure, comparing the fitness curves of only the RMHC
configurations, it can be seen that giving a single agent more
evaluations is more beneficial than polishing multiple ones at
the same time - a feature of a problem without a more noisy
landscape. Specifically, RMHC1 outperforms RMHC4, which
in turn outperforms RMHCI0.

Once repulsion is added, the fitness drops further, as in-
dicated by the REPN curves. This is likely due to the good
solutions being close to each other, which could potentially be
overcome by either increasing the population size or altering
the repulsion function parameter, indicating the drawbacks of
the algorithm when applied more generally. Also, the optimal
solution of 429 (known to exist), on average, is never found
within the given evaluation budget, but the search space now
consists of 2429 combinations. It is interesting to note that
even with the fitness drop, the worst scoring configuration
of 10 individuals in the Repelling RMHC case, on average
outperformed the best case of the Crowding algorithm, using
population size of 20, seen in Fig. 5.

C. Limitations

It is important to note that because of the population spread
over the entire landscape, adding additional individuals is
guaranteed to increase the chance of finding the optimal
solution, which would not be the case when stuck at local
maxima. However, even though the results show that the
algorithm can be useful when applied to certain types of
problems, such as the deceptive trap function, it is important
to recognize the properties of the approach that enabled it to
find the optimal value despite the local maxima issue and how
they can both be beneficial and detrimental in some scenarios.
Specifically, the effectiveness of the algorithm depends upon
the choice of the newly introduced parameters, controlling just
how repelling do the individuals find their neighbors.

VI. CONCLUSION AND FUTURE WORK

A novel approach to diversity maintenance using repelling
functions between individuals is presented. The algorithm
attempts to push all of the individuals away from each other,
with the hopes of them ending up the fitness landscape peaks.
It is shown to be effective on the deceptive trap function
with a severe local maxima problem, but also exhibits some
performance drops on a specific set of SAT problems. The
benefits of the approach causing the population to spread
out across the fitness landscape, thus potentially providing
alternative solutions to the same problem, are identified along
with the drawbacks of extra parameters required for operation.

The paper however does not address the value of changing
the newly exposed parameters to explore how the behavior
changes for the presented problems or introducing a gener-
ational evolutionary system, which can be looked at in the

future. At the same time, each individual is exploring a dif-
ferent landscape, however in this incarnation that information
is not being used - its usefulness is unknown. Additionally,
it should be useful to apply the algorithm to more specific
problems, potentially within the field of artificial creativity,
see how the solutions it finds differ from each other in a way
easier for humans to grasp. For example, applying the strategy
to a dynamic structure neural network producing sprites to
visualize the difference between the different solutions found
by this algorithm. In conclusion, the paper serves more as
an introduction of the algorithm itself, showing its concept
and the most useful features and potential applications when
a fit and diverse population is required, rather than a thorough
comparison of its performance and diversity maintenance
capabilities against more of the other existing algorithms,
which without a doubt would shed more light on its behavior.
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