
IEEE TRANSACTIONS ON GAMES 1

Beyond Playing to Win: Creating a Team of Agents
with Distinct Behaviours for Automated Gameplay

Cristina Guerrero-Romero, Simon Lucas, and Diego Perez-Liebana

Abstract—We present an approach to generate a team of
General Video Game Playing (GVGP) agents with differentiated
behaviours that can ultimately assist in the game development
process. We consider the agent behaviour as the corresponding
outcomes of playing the game: rate of wins, score, exploration,
enemies killed, items collected, etc. We create and identify
agents that are expected to achieve particular goals but do
not necessarily simulate human behaviour during gameplay. We
present a solution that, by heuristic diversification, provides a
controller with different heuristics and a corresponding set of
weights; driving its actions. Given the simplicity of this behaviour-
encoding and its easiness to evolve, we use MAP-Elites to generate
different solutions that elicit particular behaviours and assemble
a team. The resulting agents are allocated in a feature space, used
to identify the expectations of each of them. We generate a team
for 4 games of the General Video Game AI (GVGAI) Framework
and find 6 different behaviour-type agents in each. We include an
experiment to check the portability of these agents when playing
alternative levels and an exploratory work aiming to use them
to detect design flaws in game levels.

Index Terms—games, artificial intelligence, automated game-
play, agent behaviour, heuristics, heuristic diversification, play-
testing, MAP-Elites, GVGP.

I. INTRODUCTION

V IDEO game playing approaches, and especially General
Video Game Playing (GVGP), focus on creating agents

with the ultimate goal of winning the game and, ideally, being
the best at it. However, when human players play a game,
they do not always focus on winning first. Even when they
ultimately play to win, they present different ways to interact
and react to the game, driven by their interests. During the
development of a game, the existence of this diversity of
player behaviours, known as player-types or personas, holds
a relevant role in its design and the expected experience
of the players. Furthermore, testing and Quality Assurance
(QA) techniques are also directed to detect bugs and design
flaws by asking testers to focus on specific tasks. These goals
can be as simple as going through the level of a game,
interacting with the walls and objects to detect errors with
collisions, unintentional shortcuts, or other bugs that can break
the gameplay. Game development is an incremental process,
and changes often occur. Every change can have unexpected
effects on the rest of the game, so QA tests should ideally
be carried out after every new modification. However, it is not
always possible because manual testing is tedious and requires
organisation and resources. Artificial Intelligence (AI) agents
are being used for testing to address those limitations, but
these approaches are typically game-dependent. As a result,

Authors are with the Game AI Group at Queen Mary University of London.

such agents also need to be updated after certain modifications
to the game to fit its changes and maintain their purpose.

The ultimate goal of our work is to assist in the game
development and testing processes by facilitating developers
with a method to automatically trigger tests and tools during
the development of the game. We introduce a new step towards
tackling such a complex topic. Rather than removing humans
entirely, we aim to provide the necessary means to make some
of the tasks related to testing and QA easier. Our proposal
is to use general agents, so they can adapt to changes in
rules and levels, and play the game when needed without
having to modify them. These agents are not expected to
simulate players or QA testers, but they have goals beyond
winning that allow them to elicit a particular behaviour. Their
behaviour originates from focusing on different goals driven by
their heuristics and accomplishing assorted tasks. An example
would be colliding with the walls and objects distributed on the
level. As game testers would do, these agents can still trigger
errors and log information when playing the game, allowing
developers to identify such bugs quicker or immediately after
a change is made to the game. We believe that having a range
of agents where different behaviours and proficiencies can be
identified, as well as a method to generate new ones when
needed, addresses the limitations of current approaches.

The work presented in this paper builds up from our
previous one. We use heuristic diversification for the im-
plementation of the agents, which is a technique in GVGP
that we first introduced in [1]. We provided general agents
with four different behaviours and compared their performance
when taking as reference features related to each of them.
The core of the algorithms was unchanged as the evaluation
function was isolated and provided externally. The results
showed differences in the performance of the algorithms for
each of the heuristics and in their behaviours when playing the
games. Those results inspired the proposal of using a team
of general agents with distinct behaviours to assist in game
development and testing [2], which is a long-term vision. The
work presented in [3] was the first step towards reaching such
vision by defining and implementing a technical solution that
makes use of the MAP-Elites algorithm to generate a team
with those characteristics. That work has been extended in
this paper. This extension incorporates additional features for
the MAP-Elites, a new game with distinctive characteristics to
the ones used in the initial experiments (Sheriff), the presen-
tation of a demo that allows interacting with the results and
visualising the agents’ gameplays, as well as experimentation
and a proof of concept based on the proposed vision. We
identify various behaviour-type agents from the team and test

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3241864

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 06,2023 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON GAMES 2

their portability to study if their abilities and expectations are
transferable to unseen levels, different from those used for their
generation. Proving that this portability is possible is another
step towards being able to put into practice the envisioned
usage of the agents for automated testing. Finally, we conduct
initial exploratory work to check the potential of using these
agents to test the design and validity of levels by running the
agents in ‘broken‘ levels to study their outcomes.

A. Scope of Research and Definitions

This section defines a series of terms used through the paper.
a) Automated gameplay: Refers to having an agent to

play a game, instead of being played manually by a human.
b) GVGP: We use agents that play games and use heuris-

tics that are general, i.e. the agents do not make decisions
based on hard-coded or explicit information about the game.
The heuristics use, in their calculations, elements available in
the framework for every GVGAI game.

c) Single-player, tile-based 2D video games: Only games
supported by the GVGAI Framework are in the scope of
our research. These 2D tile-based games are developed in
Video Game Description Language (VGDL) and their rules
are triggered by interaction between the sprites. Each game
session has a limited time set by default and is formed by a
non-scrollable level fixed to the game screen. The AI takes
control of the player, who is represented as an avatar and can
move right, left, up, down, and act. These games do not have
continuous physics or include non-avatar puzzles or strategy
games. Similarly, we focus on single-player games, rather
than other multi-agent simulations. In any case, the methods
proposed in this paper are not limited to other types of games,
which could be a matter of future research.

d) Search algorithms: We use agents with a Forward
Model at their disposal. We do not look into learning ap-
proaches, human-like, or imitation learning techniques.

e) Testing: This work focus on the technical domain
that ensures that no bugs break the playability, influence the
gameplay, or affect any other element or characteristic of the
game as an artifact.

f) Team: We use this term to refer to the pool of agents.
They serve the same purpose, similarly to sports, where it
describes a group of people (or athletes) that train together and
compete, representing the same club. While in some sports, the
competition can involve the athletes playing simultaneously
and collaborating (e.g. basketball); in others like fencing, the
team members compete individually while still representing
the club. We base our perception of the team on the latter,
meaning that the agents of this team are not expected to play
the game simultaneously or collaborate between them.

g) Goal: The ultimate objective(s) of one of the agents
in the team for when playing the game. Examples of goals are
exploring the level, collecting items, or killing enemies.

h) Heuristic: “Criteria, methods, or principles for decid-
ing which among several alternative courses of action promises
to be the most effective in order to achieve some goal” [4].
The heuristic value is a game state evaluation, given in relative
terms to a high value (H). How a heuristic is defined and
implemented affects the agents’ decisions while playing.

i) Behaviour: The way the agent ultimately reacts and
interacts with the game. We consider the agents’ behaviour as
the results of their play (gameplay stats and features).

II. BACKGROUND

A. Player-Types, Personas and Automated Testing

Although there is considerable secrecy around video games
and the strategies followed by game studios during develop-
ment, some examples of automated testing exist. Some of
these focus in highlighting build or performance errors [5],
the robustness of gameplay features [6] or creating human-
like agents for automatic testing [7]. Automated testing and
AI-assisted game design is a recurring topic, and various ap-
proaches exist to tackle it in different areas [8], [9]. However,
most of these solutions fit closely the rules of the game and
need to be updated to adapt to changes during development.

The concept of persona is used in Software Development
to identify end-users and assist in the design of the product.
It is also applicable to game development by taking into con-
sideration the existence of player-types that can be identified
in a game, resulting from humans playing in different ways
based on their motivation [10], [11]. Players display distinct
behaviours that are also dependent on the characteristics of
the game, and metrics of their gameplay can be used to
identify these and define play-personas [12]. Personas have
also been generated procedurally to be used for automated
testing [13], where the authors identified 4 types of players in
a dungeon game (runner, monster killer, treasure collector, and
completionist) and evolved a mathematical formulae to replace
the UCB1 equation of Monte Carlo Tree-Search (MCTS) [14]
to simulate each behaviour. They analysed the performance
of these procedural personas in various levels. Our work is
inspired by [13] but it aims to have a more general and
portable approach, capable of being applied to several different
games without having to design specific types, or utility
functions, to fit the game under consideration. Extending the
idea to use general agents, developed with general goals that
apply to several different games and adapt to changes in
the levels can provide significant advantages. We name our
agents behaviour-types instead of player-types or personas,
as these concepts are either related to game design or with
agents mimicking or modelling human behaviour. We look at
the behaviour of the agents as the results of their gameplay,
without necessarily resembling human players when playing.

A recent approach in Reinforcement Learning provides a
diverse range of play-styles by making the rewards external
and agnostic to the algorithms and has been applied to
ACER [15]. We follow a similar idea of diversification but
in the scope of search algorithms and present a solution to
generate this diversity automatically.

B. MAP-Elites

The Multi-dimensional Archive of Phenotypic Elites (MAP-
Elites) is an illumination algorithm that belongs to a family
that includes Novelty Search, Novelty Search with Local
Competition, and DeLeNox [16]. In MAP-Elites, the algorithm

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3241864

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 06,2023 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON GAMES 3

searches candidates within all possibilities, finds diverse solu-
tions, and locates them in a behavioural space [17]. There are
a series of elements that need to be identified and take part
in the algorithm: the description of a candidate (genotype x);
its characteristics (phenotype px); the features that conform
to the N-dimensional map and describe the values of interest
corresponding to the candidate and its location in the map
(feature/behaviour function bx); and the performance of the
candidate to evaluate its quality compared to other solutions
(fitness function fx). There is a relationship between these
elements that can be direct or indirect, but it is represented
as x → px → bx, fx. We identify each of these elements,
and describe the algorithm in Section III-B. There have been
a number of improvements of the MAP-Elites algorithm over
the years, such as CMA-ME [18], which applies MAP-Elites
with Covariance Matrix Adaptation in standard continuous
optimization benchmarks. Our work uses the vanilla version
of MAP-Elites, which has shown to be effective for creating
different gameplay behaviours, and we leave testing other
advance variants for future research.

MAP-Elites has been applied to various disciplines1, in-
cluding the field of games. In this area, it has been used to:
generate levels [19], [20], influence gameplay [21], study the
behavioural space of a game [22], examine the relationship
between the parameters of the game and the behaviour of
an agent [23] and generate gameplaying agents [24], [25].
The generation of such gameplaying agents is usually focused
on the performance of the agents in terms of score or win
rate. As we describe later in detail, our approach focuses on
the diversity of the possible behaviours instead, and use the
performance (End-of-Game, EoG, ticks) to merely break ties
between two agents that obtain similar gameplay stats.

C. GVGAI Framework

The General Video Game Artificial Intelligence (GVGAI)
Framework is an Open-Source JAVA platform that facilitates
the research in General Video Game Playing (GVGP) and
provides a series of working controllers and 2D arcade-like
games [26]. Agents do not have access to the details of the
rules of the games or their characteristics but can simulate
future states by executing a forward model and distinguish
between types of sprites: player (avatar), resources, Non-
Player Characters (NPCs), immovable elements, etc. When
two sprites get in contact and one of them is the avatar or
an element generated by it, an event is triggered. The GVGAI
Framework allows running experiments in different games and
levels without modifying the algorithms or heuristics. These
are general within the framework; providing adaptability and
a quick experimental set-up, allowing us to test our approach
in different scenarios. We use the sampleMCTS controller
provided by the framework, which is a vanilla implementa-
tion of the Open-Loop Monte Carlo Tree-Search (OLMCTS)
algorithm [14], [27], with some modifications described next.

1https://quality-diversity.github.io/papers has a large collection of examples.

III. GENERATING AGENTS WITH DISTINCT BEHAVIOURS

The objective is to create and have available a range of
agents with differentiated behaviours and identifiable profi-
ciency. These behaviours should be elicited by their heuristics
and not the parameters of the controller, so they can easily vary
without having to make updates to their core. We present: 1) an
agent with heuristic diversification; 2) a parent heuristic that
allows to combine different goals and obtain a final reward
based on the behaviour-encoding provided; and 3) the use of
the MAP-Elites algorithm to generate distinct behaviours.

A. Agent: OLMCTS Using MemberBehaviour Heuristic

We follow an approach used in our previous work called
heuristic diversification, which we have previously applied
to single-player search algorithms from the GVGAI Frame-
work [1]. The idea is to provide the goals (heuristics) to a
controller externally, so they can easily change without having
to modify the core of the algorithm. Heuristic diversification
is applicable to any search algorithm, but in this work we
use OLMCTS. We take the sampleMCTS provided by the
framework and modify it to isolate and extract the evaluation
function so it can be provided during its initialisation. We
also store temporary information about the future states visited
with the forward model to be able to make accurate calcula-
tions of the heuristics. This temporary information depends
on the heuristics used and their characteristics, detailed in
Section IV-A. During gameplay, the reward of a state is
calculated and provided to the OLMCTS by the external
heuristic, MemberBehaviour (Fig 1). This parent heuristic
allows to combine independent heuristics. It receives a list
of goals and corresponding weights, allowing to choose the
importance given to each different objective. This approach
allows more diversity of behaviours than the one given by
simply swapping between different goals.

OLMCTS MemberBehaviour

State

Action

Game

Future states data

{H0, H1, …, HN} {W0, W1, …, WN}

Fig. 1. OLMCTS agent with MemberBehaviour, which allows to provide a
list of goals (heuristics) externally and assign a weight to each of them.

The objectives when designing the MemberBehaviour
heuristic (Fig. 2) were: allowing an easy set-up of a list of
different goals; gathering stats from each of them; being able
to combine the goals with a solution easy to generate and
evolve. As a solution, we define three elements:

1) Members goals: {t0, ..., tm}: m is the total number of
goals available to gather stats about the gameplay of the agent.

2) Enabled heuristics: {h0, ..., hn}: n(≤ m) is the total
number of enabled goals, taken from the available ones. Only
the enabled goals take part in the evaluation of the state and,
therefore, in the calculation of the final heuristic.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3241864

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 06,2023 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON GAMES 4

3) Weights: W = {w0, ..., wn}: n is the number of enabled
heuristics and each weight is assigned to one of them. The
weight gets a value between [0.0, 1.0]. This value determines
the importance that the corresponding goal is given in the
final calculation. Therefore, W ultimately describes the final
behaviour of the agent. It is easy to define, generate, and
evolve, so it can be used as an individual in MAP-Elites.

The final value of the heuristic resulting from evaluating
a certain state comes from combining all the enabled heuris-
tics, normalised to a common range [0.0, 1.0]. The heuristic
obtained for each goal is the result of the linear combination:

H(S) = h0w0 + ...+ hnwn

t4

t3

t2

t1

t0

MemberBehaviour

normalisation w0

w1

w2

w4

normalisation

normalisation

normalisation

h0

h1

h2

h4

Hstats

Fig. 2. Example of MemberBehaviour. There are 5 goals but only 4 of them
are enabled and take part in the calculation of the heuristic H .
Icons made by Smashicons: https://www.flaticon.com/authors/smashicons.

B. Using MAP-Elites to Generate the Team

In our approach, we identify the elements required for the
MAP-Elites algorithm as follows:

1) Genotype x: Vector of weights W = {w0, ..., wn} for
the heuristic function as shown in Fig. 2.

2) Phenotype px: Resulting stats when providing the agent
with W and playing the game several times.

3) Feature function bx: Characteristics of the gameplay
of the agent, taken from the stats: wins, score, exploration
percentage, interactions, etc. These illustrate the results of the
behaviour of the agent when playing the game, and it is the
information we are interested in to get a diverse team.

4) Fitness function fx: How quick the end of the game
(EoG) is reached. We establish that between two agents with
a similar set of features (stats), one is better if the game ends
earlier; i.e. if they get similar stats in less time, they are more
efficient at the task.

The pseudocode of our application of MAP-Elites is in-
cluded in Algorithm 1. The initialisation of the MAP-Elites
is carried out in two steps. First, we define the baseline
candidates. Each of these make use of just one of the
goals enabled, i.e. the weight assigned to their corresponding
heuristic is set to 1.0 while the rest are assigned to 0.0.
After this, the second initialisation step generates a series of
random candidates (weights are given random values between
[0.0, 1.0]). In both cases, each candidate is assigned with

the corresponding behaviour-encoding and assigned to their
corresponding cell. These two steps expect to 1) provide
a baseline of behaviours by using each goal independently,
and 2) provide a baseline of diversity given by the random
assignments. The algorithm starts its iterations until a certain
limit, provided as an algorithm parameter in the configuration,
is reached. In each iteration, a cell is selected uniformly at
random. The weights are evolved with a simple mutation hill
climber (one of the weights is randomly updated to a new value
between [0.0, 1.0]) and that new candidate is assigned to its
corresponding cell. This simple evolutionary method proved
enough to generate a good range of different behaviours.

The assignment, both during initialisation and during the
main execution of the algorithm, works as follows. First, the
weights are provided to the agent and it plays the game to
obtain the resulting stats. Then, these stats are used to get the
features that constitute the map and assign the candidate to its
corresponding cell. The map is divided into a fixed number of
cells given by the two feature dimensions. Each of the features
is assigned a minimum, maximum and bucket size value, so the
resulting value obtained by the agent is assigned to the bucket
that contains the range it belongs to. If the cell is empty, the
agent is directly assigned to it and the algorithm moves to
the next iteration. If the cell is occupied, the performance of
both candidates are compared, keeping the one with better
performance as the elite within the cell. When the algorithm
finishes, the map contains a set of behaviour-encodings (W) of
a diverse range of agents. Their behaviour is implied by their
location and set of features assigned in the aforesaid map.
This group of agents is what we call the team. An example
of a map generated is included in Fig. 3. If various maps are
generated for the same game and enabled goals, the team is
constituted by the ensemble of the different maps.

Fe
at

ur
e

Y

Feature X

E(6,3) = {w0, w1 … wN}

EoG

Fig. 3. Example of a resulting MAP-Elites for a two-dimensional map with
Features X and Y. These features are in different ranges and have buckets of
different sizes. The map represents a team of 23 agents, and each cell contains
the behavioural-encoding (W) of each of them.

C. Interactive Tool for Gameplay Visualisation

We are interested in the characteristics of each of the agents
and studying their behaviour when playing the game. The
graphs generated give information about the distribution of
the agents in the feature space, and it is possible to identify
what to expect from them by looking at their correspondent

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3241864

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 06,2023 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON GAMES 5

Algorithm 1 Use of the MAP-Elites algorithm to generate the team.
Nomenclature: X ← solutions (map of elites); P ← solutions’ performances; x← elite; W ← agent description; x′ ← candidate
solution; b′ ← feature descriptor of x′; p′ ← performance of x′; α ← nEnabledHeuristics, β ← nRandomInitialisations.

1: procedure MAP-ELITES-TEAM
2: X ←MAPElitesInitialisation() ▷ adds to the map α elites with only each of the goals enabled
3: ▷ generatse β elites with random weights and add them to the map
4: for iter = 1← nAlgorithmIterations do
5: x← random selection(X)
6: W ← behaviourWeights(x)
7: W ′ ← evolution(W) ▷ evolves elite’s weights to generate a new candidate
8: x′ ← createGameplayElite(W ′) ▷ the agent plays the game nGameRuns
9: b′ ← x′.featureStats() ▷ candidate’s stats of the map features

10: p′ ← x′.performanceStats() ▷ candidate’s stats of the performance criteria
11: if X(b′) = ∅ or p′ > P (b′) then
12: P (b′)← p′

13: X(b′)← x′

return X , P

cells. However, static images have a limitation when looking at
a more extensive analysis. Moreover, the results are produced
in JSON files, so going through the data of the agents assigned
to each cell of the map to get detailed information about them
is a tedious process. To facilitate the processing and reading
of the results, we created an online interactive tool2, which
complements and extends our work, by allowing access to the
results of the experiments. It contains the following features:

1) Welcome page: Includes an overview of the tool, def-
initions, and instructions. It provides details about the goals,
games, and features used to generate the MAP-Elites.

2) Data selection: Choose the game and pair of features to
load and visualise the corresponding MAP-Elites generated.

3) Team visualisation: Presents an overview of the game,
the heuristics enabled for the agents, the features used, and a
heatmap that represents the MAP-Elites generated. This graph
is interactive, and each cell is given a colour based on the
agent’s performance (EoG time).

4) Agent details and gameplay: Selecting a cell from the
map gives details about the corresponding agent. It shows its
behaviour-encoding (weights assigned to each of its heuris-
tics), the stats resulting from the 100 gameplays of the level,
and a pre-recorded video exemplifying its gameplay.

5) Download files to run the agents locally: We provide a
standalone to run the agents locally. The files and instructions
are available to download.

This tool generates interactive maps to retrieve detailed
information about each of the agents: resulting stats, perfor-
mance, and an example of their gameplay. Its visualisation
of results allows witnessing the distinct behaviours of the
agents. We use it to navigate the maps generated for each game
and identify behaviours corresponding to different players and
tasks, presented in the following sections.

IV. EXPERIMENTAL SET-UP

We run a series of experiments to test the approach in games
with different characteristics. In this section, we describe the

2https://demo-visualize-diverse-gameplay-xqjmp.ondigitalocean.app

goals identified that correspond to the heuristics implemented
for the OLMCTS and the games used. The code is on Github3.

A. Goals and Heuristic Implementation

We identify 5 goals that are based on player-type goals and
inspired by the list of general heuristics presented in [2]. These
heuristics gather information related to their goals. This data is
used to obtain the stats required to assist during the generation
of the team. These heuristics are general within the GVGAI
Framework and can be used in any of its games.

1) Winning and score: It prioritises winning the game while
maximising the score. The heuristic is designed to heavily
penalise states where the game is lost and to reward those
where it is won. It collects winning status (1 for win, 0 for
lose), final score, game tick when the score changed last, and
game tick when the last positive score change occurred.

2) Exploration: It maximises the physical exploration of
the map, divided into tiles. The heuristic is designed to take
into consideration the number of times each position has been
visited. It prioritises visiting those locations that haven’t been
visited before and, once visited, those that have been visited
the least. It favours exploring as much as possible so reaching
an EoG state is penalised. It gathers the number of different
locations visited, the final exploration matrix with details about
the number of visits in each location, and the game tick when
the last exploration happened.

3) Curiosity: It maximises the discovery and interaction
with sprites in the game, prioritising interactions with new
sprites or, when this is not possible, in new locations of
the game (curiosity). Interactions are defined as the avatar or
any sprite generated from the player getting in contact with
elements of the game (collisions and hits, respectively). The
heuristic is designed to provide a high reward for gameplay
that maximizes: a) new sprites discovered and new unique
interactions; b) new curiosity interactions; c) total of different
curiosity interactions; and d) number of total interactions. It
penalises EoG states. It collects the total number of different

3https://github.com/kisenshi/gvgai-agent-behaviour-research

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3241864

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 06,2023 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON GAMES 6

sprites discovered during gameplay, the list of their ids and the
game-tick when the last discovery happened. It also gathers
data about the number of unique interactions with sprites,
number of curiosity interactions, number of total collisions,
number of total hits, and the last game-tick when each of
these last three interactions occurred.

4) Killing: It maximises destroying Non-Player Characters
(NPCs). The heuristic is designed to penalise EoG states.
‘Kills‘ are those interactions between sprites generated from
the avatar (hits) and sprites of the type NPC. It collects the
total number of enemies killed, their sprite id and the game-
tick when the last kill happened. As VGDL rules can represent
killing enemies in different ways, we make the following
assumptions that the game should fulfill for the heuristic to
work as expected: a) enemies are killed in one shot; b) enemies
are only killed by hits; c) the avatar is not able to kill an enemy
by colliding with it or by using elements of the terrain.

5) Collection: It maximises collecting items. The heuristic
is designed to penalise end of game states. ‘Collections‘
are those interactions between the avatar (collisions) and
sprites of the type Resource. It gathers the total number of
items collected, their sprite id and the game-tick of the last
collection. As VGDL rules can represent collecting items in
different ways, we make the following assumptions that the
game should fulfill for the heuristic to work as expected: a)
all collectible items are of the type Resource; b) items can
only be collected by the avatar by colliding with them.

Not all of the goals apply to every game, as they depend on
its characteristics (e.g. there is no point in guiding the agent to
collect resources when the game does not include collectibles).
In the next section, we present the games and establish which
heuristics are included in the experiments for each of them.

B. Games and Levels

The approach has been applied to four GVGAI games with
different characteristics. The levels used in each of them to
generate the teams are shown in Fig. 7. We have reviewed the
rules of the games and carry out some updates to make sure
they fit the assumptions described in the heuristics.

1) Butterflies: The goal is to collect all butterflies before
the time runs out. Butterflies move randomly and create
other butterflies by interacting with cocoons scattered around
the map. If all cocoons transform, the game is over. This
game does not allow killing NPCs or collecting items, so
the two corresponding heuristics are not enabled during the
experiments. For this game, we run two sets of experiments
with two sets of goals to compare the distribution and diversity
of the agents generated.

2) Zelda: The objective is to collect the key and bring it to
the door. There are monsters that can be destroyed by hitting
them with a sword, but they can also kill the player when
colliding with them. All heuristics are used.

3) Digdug: The objective is to collect all items (gems and
gold) and kill all monsters before the time runs out. The player
has a shovel that destroys 1) the walls, 2) the monsters, and
3) the blocks of gold to spawn gold. Monsters can also kill
the player by colliding with them. All heuristics are used.

4) Sheriff: The objective is to kill all the bandits before the
time runs out. This game is a new addition to those used in [3].
In contrast to the games listed above, this one is a shooter and
the avatar does not have access to the area where the enemies
are (the jail), as they surround the player. Although there are
barrels dispersed in the map that protect the player from the
enemies’ bullets and can be destroyed when hit, they are not
collectibles. Therefore, we only enable four heuristics.

V. EXPERIMENT I: TEAM GENERATION

We test the approach in games with different characteristics
by generating a team of agents with distinct behaviours for
each of them. In this section, we describe the features and
values of the MAP-Elites and include an overview of the
resulting maps generated. The jar, configuration files and
resulting JSON data can be found in an OSF repository4.
The interactive tool described in Section III-C allows a real-
time navigation of the results. For simplicity in the tables and
results, we give a unique code to each set of experiments
carried out for each game, as follows: B2 for Butterflies with
2 heuristics enabled: Winning and Exploring; and B3 when
it also includes Curiosity. Z5 and D5 for Zelda and Digdug
respectively with all 5 heuristics enabled: Winning, Exploring,
Curiosity, Killing and Collection. Lastly, S4 for Sheriff with 4
heuristics enabled: Winning, Exploring, Curiosity and Killing.

A. Experiments Configuration
For an easy experimental set-up, each execution of the

algorithm is configurable with an external file; being able to
choose the game, level, controller, and following attributes:

1) nGameRuns: Number of times the agent (candidate)
plays the game with a certain behaviour-encoding (W) . We
use 100 gameplays in every game and experiment.

2) nRandomInitialisations: Number of random candidates
generated during initialisation, fixed to 10.

3) nIterations: Number of iterations of the MAP-Elites. We
only have a limited allocated time to run each experiment, so
the value set depends on the complexity of the game and the
number of heuristics provided. We set 200 iterations for B2,
B3, and S4. For Z5 and D5, the time spent on each iteration
of the algorithm is higher, so we obtain the team after 125
and 100 iterations of the MAP-Elites, respectively.

4) feature X, feature Y: We generate 2-dimensional maps,
for simplicity in the processing and display of the results. For
each game, we execute the MAP-Elites with different pairs of
features, which depend on their characteristics. Table I shows
the full set of experiments and the pair of features used.

B. Resulting Maps
Running the experiments results in 68 maps for the five sets

of experiments: B2, B3, Z5, D5 and S4. A total of 124, 302,
486, 293 and 352 agents are generated for each game and set
of goals, respectively. The group of elites generated in each
map forms part of the team of available agents to play the
game. Going through every map and game is prohibited for
the sake of space. The overall observations that stand out when
going through the teams generated are the following:

4https://osf.io/whxm8/

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3241864

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 06,2023 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON GAMES 7

TABLE I
COMBINATIONS OF FEATURE PAIRS USED FOR EACH SET OF

EXPERIMENTS: B2 (10 CONFIGURATIONS), B3 (10 CONFIGURATIONS), Z5
(14 CONFIGURATIONS), D5 (19 CONFIGURATIONS), AND S4 (15

CONFIGURATIONS); FOR A TOTAL OF 68 EXECUTIONS OF MAP-ELITES.

X
Y Score Exploration Curiosity Collisions (B2,B3) Kills Items

Percentage Interactions (D5,Z5,S4)
D5 D5

Wins All All All All Z5
S4

Exploration D5 D5
Percentage All All All Z5

S4
D5 D5

Curiosity All All Z5
S4

Collisions (B2, B3) D5 D5
Interactions (D5,Z5,S4) All Z5

S4
Kills S4 D5

1) Agents performance: The performance is given by how
fast the agent reaches the End of Game (EoG). Not all the
agents from the different teams are fast in terms of reaching
the EoG, and in some cases, they are very slow with an
average of EoG ticks very close to the maximum. However,
our approach does not focus on the performance of the agents,
and it merely serves as assistance to replace the elites when
there is a collision. The interest comes from the diversity of
the solutions generated and, thus, the location of the agents
in the space of features. It serves as a reference to identify
different behaviours. The final performance value of the elite
(EoG) gives a hint about its average execution time.

2) Team size: The size of the map generated varies both
between games and pair of features used. For B2, the number
of agents generated for each configuration of the MAP-Elites
is found between 4 and 24; for B3, between 16 and 49,
for Z5, between 22 and 44, for D5, between 7 and 28; and
for S4, between 13 and 44. Overall, the size of the MAP-
Elites generated for B2 and D5 is the smallest. For B2, only
two of the three possible goals are applied to the agents,
resulting in less diversity of final behaviours. Digdug is a game
comparably more complex than the others. We speculate that
in this game, either the MAP-Elites requires more iterations to
reach diversity, or it is not possible to elicit further behaviours.
As a result, the pool of agents available is smaller.

3) Agents distribution: The distribution of the agents in
the feature space is different between games for similar pair
of features. This disposition provides information about the
expected behaviour of the agents based on their location and
the values obtained for each feature.

4) Diverse goals results in a more diverse team: When
comparing the maps generated for B2 and B3, we can infer
that the inclusion of the new goal (Curiosity) in B3 results in
a more diverse team of agents for a similar setup and number
of iterations of the MAP-Elites (a total of 124 agents for B2
and 302 for B3). This diversity is clear in the maps generated
for the pair of features related to curiosity and interactions.
This increased diversity is true even for pair of features not
directly related to the new goal, as shown in Fig. 4. Including
Curiosity, in this case, allows generating agents that obtain
different rates of exploration for a higher range of winning
rates, providing more diversity and flexibility on the selection

of agents. By having more heuristics enabled in a game, it is
possible to generate more behaviours and create a more diverse
team. For other examples and results discussions, see [3].

C. Results Summary

The aim of this experiment is to generate agents in games
with different characteristics to prove the generality of our
approach. The results provide a team of agents, assembled
from the group of maps generated, able to play each game
automatically. The team size per game varies, having a total
of 124, 302, 486, 293, and 352 agents with different perfor-
mances and resulting stats. Each agent of the pool is expected
to interact and behave differently in the game. However, not
all of them would be practical, so we need to identify the
most useful ones based on the game under development. They
are located in behavioural spaces based on the outcomes of
their gameplay, so this distribution allows identifying agents
with target abilities based on their map location. The following
section describes such identification by selecting 6 agents of
different characteristics for each game.

VI. BEHAVIOUR-TYPE AGENTS IDENTIFICATION

We identify 6 agents for each game that correspond to
behaviours and tasks we are interested in. These behaviour-
types agents have been selected from the resulting maps
that assemble the team for each game (Section V-B). The
descriptions of the different behaviour-type agents identified
across the games, in alphabetical order, are the following:

• Barrels Shooter. It only applies to Sheriff. Agent with a
high rate of interactions and hits but a low rate of kills, so
it targets the barrels instead of the bandits. It is identified
in the map with the corresponding features.

• Collector (High/Low). Agent that gathers a high or low
number of items.

• Curiosity (High/Low).
• Explorer (High/Low).
• Interactions (High/Low).
• Killer (High/Low).
• Scorer (High/Low).
• Speed-runner. Agent with a high victory rate that tends

to finish the game fast. It is identified by looking through
the agents with a very high win rate in the maps with
such a feature to find one with one of the lowest EoG.

• Survivor It only applies to Sheriff. Agent that survives
until the time runs out, winning the game. It is identified
in the map with the corresponding feature by looking at
a resulting high EoG (performance).

• Walls Breaker. It only applies to Digdug. Agent that
focuses on breaking the walls and tends to follow them
instead of moving through open areas. It is identified by
having a high curiosity but a mid-range exploration rate
in the map with the corresponding features.

• Walls Interaction. It only applies to Butterflies. Agent that
focuses on interacting with the trees and butterflies. It
is expected to move close to the walls bypassing open
areas. It is identified by having high curiosity but average

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3241864

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 06,2023 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON GAMES 8

Ex
pl

or
at

io
n

Pe
rc

en
ta

ge

Wins

EoG

(a) B2

E4

Wins

Ex
pl

or
at

io
n

Pe
rc

en
ta

ge

EoG

(b) B3. Includes agent identification: Speed-runner (E4),
with ≃ 100% win rate and one of the lowest EoG ticks.

Fig. 4. Resulting MAP-Elites for features Wins and Exploration Percentage.

exploration features in the map with the corresponding
features, and confirmed by observing its gameplay.

Curiosity, Explorer, Interactions, Killer, and Scorer are
identified from the maps with the corresponding feature. The
group of agents chosen is different between games. All the
agents selected for Butterflies are taken from the results of
B3, as we have determined that the diversity of behaviour in
the team is richer than the one resulting for B2. For each game,
we include one of the MAP-Elites where at least one of the
agents is found (Figs. 4b, 5a, 5b, and 5c). Table II shows an
overview of all the agents selected for each game.

VII. EXPERIMENT II: TEAM PORTABILITY

We carry out an experiment in each game to determine the
portability of the behaviour-type agents identified. We propose
that if an agent presents similar stats or a similar tendency
across different levels, it suggests that their strength is carried
between them. Therefore, that agent can be used with similar
expectations independently of the level used to generate it.

A. Description of the New Levels

We present four new levels for each game, with a similar
size but different characteristics and distribution of the ele-
ments. The outline of these levels is shown in Fig. 7. We
run each of the agents identified a total of 100 times in each
of the levels to obtain the stats and compare them to their
corresponding features. We also repeat the gameplay in the
original level and obtain stats from it as guidance.

1) Butterflies: The levels have a different number of but-
terflies, trees and cocoons, presenting different distributions
of elements and area shapes; some of them being more open
(7e, 7m) than the original level. Level 7i is horizontally
symmetric. Level 7q is designed to have player, butterflies
and cocoons in differentiated areas, with only one access point
between them. Its design is very different from the other levels,
which causes a small noise in the stats collected.

2) Zelda): The levels maintain the number of monsters
(except 7n where we include two additional ones), so the
differences between them come from their shape given by the
distribution of walls. Levels 7f and 7n are open, the latter with

blocks in the middle, surrounding the key. Levels 7j and 7r
have many walls. The former has narrow corridors and the
latter large rooms, connected by one access point.

3) Digdug: All elements provide differences between the
levels for this game. Level 7g contains breakable walls cov-
ering most of the level and three spawners, but few items.
Level 7k contains a high density of walls but with an open
area in the middle that separates them. Level 7o has a
heterogeneous distribution of walls and open spaces, with few
monsters and items. Level 7s is the most different one, as the
walls surround the level and separate two big open areas. One
of these areas is where the player starts the game, while the
other contains a high number of items and monsters.

4) Sheriff: The shape of the game is similar on all levels
(given by the rules and the mechanics of the game), and the
number of bandits varies between 9 and 11. The main differ-
ence between levels come from the number and distribution of
barrels. In levels 7h and 7l, the barrels are distributed around
the borders. On the contrary, in levels 7p and 7t, there are
barrels also located in the middle of the map.

B. Results: Portability of the Agents Between Levels

The experiments result in stats from 100 gameplays of each
agent in each level. We present the results in Tables III, IV, V
and VI showing, for each of the agents, the stats applicable to
their behaviour-type. We also include the relevant information
about each level for context.

1) Butterflies: We see a trend on the stats confirming that
most of the agents are portable between levels, and it is quite
clear for the agents related to exploration (E5, E6), curiosity
(E3, E6) and win rates (E4). In the latter, we can highlight
the fact that the win rate and exploration drops in level 7q
compared to the other ones. However, looking at the win
rate stats overall the agents, E4 has the highest percentage
of victories (89%), compared to the rest 85% (E1), 9% (E2),
4% (E3), 8% (E5), and 5% (E6). E4 also shows the lowest
EoG value (61.13), vs 78.68, 959.46, 862.94, 793.78, and
860.37. Similarly, E5 achieves one of the highest exploration
rates (74.56%), vs 32.25% (E1), 78.05% (E2), 42.82% (E3),
25.60% (E4), and 43.25% (E6). Therefore, the strength of
these agents (winning the game quickly and achieving a high

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3241864

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 06,2023 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON GAMES 9

TABLE II
FULL SELECTION OF AGENTS FROM THE TEAM PER GAME, IDENTIFIED BASED ON THEIR BEHAVIOUR. FOR EACH behaviour-type AGENT, IT INCLUDES

THE FEATURE PAIRS OF THE MAP-ELITES WHERE IT WAS FOUND AND THE RESULTING AVERAGE OF STATS (Map features), THE CORRESPONDING CELL
IN SUCH MAP (Cell id), END OF GAME TICKS (EoG), AND THE WEIGHTS THAT ENCODE THE HEURISTIC ASSIGNED TO IT (Weights W). THE WEIGHTS

CORRESPOND TO THE HEURISTICS IN THE FOLLOWING ORDER. B3: Winning and Score, Exploration, Curiosity; S4: Winning and Score, Exploration,
Curiosity, Killing; Z5, D5: Winning and Score, Exploration, Curiosity, Killing, Collection.

E1 E2 E3 E4 E5 E6
Butterflies (B3)

Behaviour-type Low scorer High scorer High curiosity Speed-runner High explorer Walls interaction

Map features Collisions: 8.09 Collisions: 370.36 Curiosity: 121.92 Wins: 100% Exploration: 99.92% Exploration: 65.63%
Score: 19.18 Score: 50.72 Collisions: 1398.23 Exploration: 37.72% Collisions: 540.19 Curiosity: 108.15

Cell id [1, 2] [8, 6] [7, 21] [11, 4] [11, 11] [7, 6]
EoG 95.69 1860.99 1675.32 87.93 1939.34 1479.75

Weights W 0.92, 0.52, 0 0.1, 0.45, 0.67 0, 0, 0.21 0.94, 0.08, 0.02 0.02, 0.29, 0.68 0.04, 0, 0.9

Zelda (Z5)

Behaviour-type High scorer Speed-runner High explorer Low killer High killer + High killer +
high explorer low explorer

Map features Wins: 0.00% Wins: 99.00% Exploration: 97.00% Interactions: 37.91 Exploration: 95.64% Exploration: 46.92%
Score: 12.85 Score: 6.37 Curiosity: 62.66 Kills: 1.95 Kills: 5.50 Kills: 4.64

Cell id [0, 13] [10, 6] [20, 7] [1, 2] [20, 6] [10, 5]
EoG 1966.42 450.05 1902.58 544.32 1849.54 1951.38

Weights W 0, 0.62, 0, 0.59, 0 0.96, 0.54, 0.61, 0, 0 0.92, 0.61, 0.01, 0.93, 0.36 0.66, 0.13, 0.01, 0.04, 0.16 0.08, 0.55, 0.04, 0.84, 0.51 0, 0, 0, 1, 0

Digdug (D5)

Behaviour-type High collector + High collector + Low collector + Walls breaker High explorer Low explorer +
high killer low killer high killer high scorer

Map features Kills: 10.55 Kills: 2.84 Kills: 9.91 Exploration: 67.14% Exploration: 100.00% Exploration: 29.77%
Items: 26.90 Items: 26.98 Items: 9.83 Curiosity: 450.88 Curiosity: 324.97 Score: 35.77

Cell id [4, 10] [1, 10] [4, 4] [14, 19] [21, 13] [6, 8]
EoG 1995.89 1989.92 1999.99 1783.33 1999.01 1999.93

Weights W 0, 0, 0.7, 0.92, 1 0, 1, 0, 0, 1 0, 0, 0, 1, 0 0, 0, 0.69, 0, 0.01 0, 0.7, 0.86, 0, 0.01 0, 0, 0, 0.49, 0.33

Sheriff (S4)

Behaviour-type Survivor + High killer + High killer + Speed-runner Barrels shooter High curiosity +
low killer high explorer low explorer low interactions

Map features Wins: 100% Exploration: 99.50% Exploration: 14.04% Wins: 100.00% Interactions: 350.80 Curiosity: 101.29
Kills: 3.19 Kills: 7.00 Kills: 6.99 Score: 7.99 Kills: 5.03 Interactions: 127.83

Cell id [11, 3] [11, 7] [2, 7] [11, 9] [8, 5] [6, 3]
EoG 999.00 966.77 412.30 359.17 549.71 819.76

Weights W 0.84, 1, 0, 0 0, 0.26, 0, 0.46 0.09, 0, 0, 1 0.57, 0.05, 0.03, 0.92 0, 0, 0.19, 0 0.28, 0.25, 0.9, 0.46

exploration) is still transferred to this level 7q, even when such
portability is not noticeable at first. This level is also the most
different one, as there are two distinct areas with a unique
access points between them. Thus, the agents need to find
that access to be able to collect the butterflies and win. There
are only 3 cocoons, and the butterflies are close to these, so the
game may end before the agent can even reach the area to win
the game or explore it. Regarding the agents related to score,
either high (E1) or low (E2), the resulting stats implies that
they are not as easily transferable between levels as the other
agents. In Butterflies, the score depends on the disposition of
the butterflies on the map and their distance to the player.

2) Zelda: All agents selected for this game seem to be
transferable between levels. For the High scorer (E1), the final
score is similar through all levels, increasing accordingly to the
additional monsters in level 7n. We believe these results come
from the characteristics of the game and the fact that we use
a similar number of the elements involved in its calculation.
The number of kills increase and decrease relatively to the
characteristics of the agents related to that feature: E5 and
E6 achieve a high number of kills across levels, while E4,
on the other hand, obtains a comparably low number. We see
similar results for exploration, where agents expected to obtain
a high rate (E3 and E5) achieve more than 93.33% in every
level, while the low explorer (E6) achieves 54.79%. Taking a
look at the Speed-runner (E2), it is not clear the tendency is
maintained through the levels. However, when taking a look at
the overall win rates and EoG ticks for the rest of the agents,
we can assert that it actually does. Although the win rate is

slightly higher for E4 in level 7r, the resulting rates for the
other four agents is significantly lower: 0% (E1), 8% (E3),
12% (E5), and 0% (E6). Therefore, 96% is a high value in
comparison. On the rest of the levels, all the rest of agents
obtain lower win rate than E2: 0 − 73% vs 76% in level 7f,
0− 60% vs 65% in level 7j, and 1− 79% vs 89% in level 7n.
We observe similar results for the EoG ticks, as E2 obtain
comparatively lower EoG ticks across levels than the other
agents, even when these are objectively high in levels 7f and 7j.

3) Digdug: All agents selected seem to be transferable
between levels in this game. Those expected to collect a high
number of items (E1, E2) manage to do so, achieving an aver-
age close to the maximum number of resources available. On
the other hand, the Low collector (E3) gathers at most a third
of those resources. The stats of these agents also match with
the corresponding number of kills expected from each of them.
While E1 and E3 achieved a high number of kills, E2 does
not. Therefore, these three agents with different proficiency in
collecting items and killing enemies are transferable, and the
trend of their results is maintained between the different levels.
We observe a similar tendency in the agents with stats related
to exploration: E4 as a Wall breaker is expected to achieve
a mid-average exploration percentage (<= 70.12%) and high
curiosity, and it gets similar stats in the new levels. The High
explorer (E5) achieves between 98.51% and 100% exploration
across levels. E6, on the other hand, reaches a maximum of
37.98% while achieving a high score, as expected.

4) Sheriff: All agents display the characteristics they were
selected for through the different levels. E1 and E4 are agents

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3241864

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 06,2023 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON GAMES 10

E1

E2

Wins

S
co
re

EoG

(a) Zelda: High scorer (E1), with the highest score feature across the maps,
and Speed-runner (E2), with one of the highest win rate and lowest EoG.

E2 E1

E3

Kills

It
em
s

EoG

(b) Digdug: High collector and killer (E1), with a high number of items
collected and enemies killed, High collector and low killer (E2), with a
high number of items collected but a low number of enemies killed, and
Low collector and high killer (E3), with a low number of items collected
but a high number of enemies killed.

E3 E2

K
ill

s

Exploration Percentage

EoG

(c) Sheriff : High killer and explorer (E2), with the highest value pair of
exploration rate and average of kills, and High killer and low explorer
(E3), with the highest number of kills and lowest exploration rate.

Fig. 5. Behavior-type agents identification from one of the resulting MAP-
Elites for the games Zelda, Digdug, and Sheriff.

related to winning the game but in different ways. E1 is
a Survivor that wins the game by reaching the end of the
game while avoiding killing many enemies. Its behaviour is
shown on the stats overall levels: >= 98% win rate, less
than half of the bandits kill in average and EoG close to
the maximum. E4, on the contrary, achieves a low average
of EoG ticks across levels (<= 418.7) while still achieving
a high rate of wins (>= 97%). E2 and E3 are both High
killers (achieving similar killing stats through the levels) with
different skills on exploration: E2 is a High explorer and
reaches a high exploration overall levels (>= 97.89%), while
E3’s exploration is low (<= 17.81%). Similarly, stats for E5
and E6 follow a similar trend across the levels.

C. Results Summary

The generality of the heuristics allows running the
behaviour-type agents at any level of the game. This exper-
iment aimed to show if the proficiency identified in each
of those agents is portable to new levels. Results show that
the tendency of the resulting gameplay stats related to their
behaviour-type is generally maintained between levels. In most
cases, this portability is straightforward to confirm by just
looking at the results of the agent across levels. However,
there are cases where it is also necessary to consider the
global stats between agents at a particular level to reach this
conclusion. It is also possible that the characteristics of a game
impede a particular behaviour-type agent from being portable.
For example, the score in Butterflies is very dependent on the
distribution of the elements at the start of the game, so the
agents related to it, E1 and E2, are not capable of carrying
out their proficiency when they play new ones.

Thus, a limitation of this approach materializes when fea-
tures relevant to the agent are very dependent on the rules
of the game. Running similar portability experiments after
identifying the agents to ensure they can generalise to new
levels should mitigate this constraint. Portable agents could be
used to test new or updated levels to help find potential design
flaws. These design flaws could be detected by highlighting
those cases where the stats obtained by the agents do not fit
the expectations. That is the goal pursued in the next section.

VIII. USING THE Team FOR AUTOMATED TESTING

This section exemplifies using behaviour-type agents for
testing the design and validity of new levels. We modify the
original levels of the games used to generate the team to be
impossible to win, removing crucial elements or increasing
difficulty (Fig. 7). We hypothesise that these modifications will
have an effect in the tendency of the gameplay stats achieved
by the behaviour-type agents. Each of the agents play the level
100 times. Tables III, IV, V, and VI compare, per game, the
resulting stats for each behaviour-type agent from playing the
new level to the ones obtained in the portability experiments.

1) Butterflies: The new level is similar to the original, but
all the butterflies are cocoons instead. An isolated butterfly is
included so the game does not end immediately. This butterfly
does not have access to the area where the player is. Therefore,
the player cannot win the game, and the time always runs out.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3241864

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 06,2023 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON GAMES 11

The resulting score for both high and low Scorers (E1 and
E2) is 0. We have previously discerned that these agents may
not be portable between levels, but these results are intriguing.
Furthermore, in this level, Speed-runner (E4) never wins the
game and averages an EoG ticks similar to the maximum
allowed (2, 000). Looking at these results, we can infer that the
level is not winnable, and that there are no butterflies at reach
to the player because the score does not increase. The resulting
stats of E3, E5, and E6 do not raise any areas of concern. These
agents still achieve the expected high curiosity, exploration,
and wall interaction, respectively, as the modifications in the
level do not impede fulfilling their tasks.

TABLE III
Butterflies: PORTABILITY AND EXPERIMENTAL LEVEL TESTING

COMPARISON. COLUMNS SHOW AVERAGE GAMEPLAY STATS PER LEVEL.
THE STATS SHOWN ARE THE ONES RELATED TO THEIR PROFICIENCY. THE
DIMENSIONS HIGHLIGHTED ARE DIRECTLY OR INDIRECTLY IMPACTED BY

CHANGES IN THE ‘BROKEN‘ LEVEL. EOG IS 2000.

7a 7e 7i 7m 7q ‘Broken‘
Max. score 64 38 58 38 18 64
Total walls 102 93 91 83 99 102

Low scorer (E1)
Score 20.44 29.58 43.56 21.2 12.64 0

High scorer (E2)
Score 47.76 30.78 51.1 22.58 11.86 0

High curiosity (E3)
Curiosity 116.53 98.99 116.38 82.13 76.38 103.74
Collisions 1436.82 1754.85 1362.33 1780.46 715.56 1858.56

Speed-runner (E4)
Win rate 100% 100% 99% 100% 89% 0%

EoG 102.15 103.49 114.38 73.61 61.13 2000
High explorer (E5)

Exploration 99.29% 99.30% 99.33% 99.77% 74.56% 100%
Walls interaction (E6)

Exploration 67.43% 60.28% 68.15% 44.6% 43.25% 59.40%
Curiosity 114.59 96.53 120.46 79.86 75.16 103.72

2) Zelda: The new level is similar to the original, but
an area of the map is inaccessible and contains one of the
monsters and the key. Thus, not all locations are reachable
and the player cannot collect the key to win. The agents whose
gameplay results suffer significant changes are E2, E3, and E5.
The win rate for the Speed-runner (E2) drops to 0%, while
the EoG ticks increase to 1897.65. This value is higher than
any result previously obtained by this agent (<= 1242.26).
These results suggest the impossibility of winning the game.
In addition, the exploration rate for the High explorer agents
(E3 and E5) drops from higher than 90% to lower than 70%.
These results hint that part of the level is not accessible.
Coincidentally, all these agents relate to either winning or
achieving a high exploration, so they are directly impacted
by the issues in the level. There is also a difference in the
results when the agents are indirectly affected. E4 (Low killer)
achieves a higher average of kills than in the previous cases
(4.06). The number of enemies does not increase, but not being
able to finish the game provides more time for this agent to
kill enemies. Similarly, the final score of E1 drops to 9.72
because it is not possible to get the key, win, or kill the enemy
that is out of reach. Stats related to E6 (High killer and low
explorer) are not impacted. Fig. 6 shows a graph with the
Exploration stats of the 100 play-throughs for E3, E5, and E6
in the ‘broken‘ level compared to the portability experiment.

TABLE IV
Zelda: PORTABILITY AND LEVEL TESTING RESULTS. EOG IS 2000.

7b 7f 7j 7n 7r ‘Broken‘
Max. score 14 14 14 18 14 14

Total enemies 6 6 6 8 6 6
High scorer (E1)

Score 12.25 12.11 11.7 16.44 11.55 9.72
Speed-runner (E2)

Win rate 90% 76% 65% 89% 96% 0%
EoG 617.18 1187.98 1242.26 689.03 450.86 1897.65

High explorer (E3)
Exploration 98.03% 95.36% 95.25% 98.31% 93.33% 68.25%

Low killer (E4)
Kills 1.62 3.25 2.97 3.53 1.79 4.06

High killer and explorer (E5)
Kills 5.68 5.66 5.44 7.71 5.41 4.63

Exploration 97.19% 97.93% 94.71% 98.61% 94% 66.47%
High killer and low explorer (E6)

Kills 4.78 5.17 4.21 7.26 3.77 4.48
Exploration 48.38% 50.66% 42.25% 54.79% 35.73% 44.28%

7b 7f 7j 7n 7r

Fig. 6. Experimental level testing in Zelda. Resulting Exploration in the
‘broken‘ level compared to the portability results, from 100 gameplays. E3:
High explorer, E5: High killer and explorer, E6: High killer and low explorer

3) Digdug: The new level is similar to the original, but
all the breakable walls have been removed. These are crucial
game elements, so we expect that removing them affects
playability. In the results, neither the collectibles, kills, or
high exploration features hint that there may be an issue, as
these stats maintain the expected trend. The tweaked level
has the walls removed, so the agent expected to break them
(E4) should be the one directly impacted by the change. This
hypothesis is confirmed by looking at its results: curiosity
and hits drop drastically, from 464.6 and 269.65, respectively,
on the original level to 47.58 and 18.31 on the new one.
The exploration of this agent also is impacted and drops to
45.53% because it is likely that this agent makes use of its
ability to break walls to cover the map. On the other hand, the
exploration for the Low explorer (E6) increases (slightly) to
44.32%, while in the rest of the levels it is between 30−37%.
By analysing this agent on its own, this result could be taken
as an outlier. However, when analysed in conjunction with the
rest, we can assume that this change could also be linked to
the nonexistence of walls. The agent is indirectly impacted
because it does not use actions or game-ticks to break the
walls, being able to move instead, covering more space.

4) Sheriff: The shape and distribution of the barrels in
the new level are similar to the original. However, we have

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3241864

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 06,2023 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON GAMES 12

TABLE V
Digdug: PORTABILITY AND LEVEL TESTING RESULTS. EOG IS 2000.

7c 7g 7k 7o 7s ‘Broken‘
Max. score 44 48 61 14 53 44

Total enemies 12 16 13 5 14 12
Total items 27 19 41 8 50 27

Breakable walls 267 292 247 196 103 0
High collector and killer (E1)

Kills 10.64 13.74 11.56 3.88 12.68 10.34
Items 26.92 18.91 40.76 7.95 49.90 26.01

High collector and low killer (E2)
Kills 2.81 3.19 3.05 0.60 4.69 2.61
Items 27 19 40.99 8 50 27

Low collector and high killer (E3)
Kills 9.64 12.62 12.53 4.7 13.31 11.54
Items 9.14 5.05 11.36 1.72 9.74 10.33

Walls breaker (E4)
Exploration 70.12% 67.66% 67.70% 64.73% 46.98% 45.53%

Curiosity 464.6 463.77 434.05 358.54 249.87 47.58
Hits 269.65 282.32 245.53 197.70 120.67 18.31

High explorer (E5)
Exploration 99.98% 100% 99.99% 100 98.51% 100%

Low explorer and high scorer (E6)
Exploration 30.92% 26.49% 36.32% 26.96% 37.98% 44.32%

Score 35.49 35.46 51.3 11.02 47.71 40.26

increased the number of bandits from 8 to 35. We hypothesise
that almost quadrupling the enemy count would increase the
difficulty drastically, being unmanageable for some players.
The resulting gameplay stats of the Barrel shooter (E5) are the
ones impacted the most, as the number of interactions drops
from 439.42 to 70.21. This agent dies quickly (149.38 EoG)
and often (1% win rate), not having enough time to destroy
the barrels or interact with them. We believe that the main
cause of this change is the indifference of the agent to killing
enemies and, given the high number of these, it is unable to
dodge them. The EoG doubles for the Speed-runner (E4) from
364.75 to 650.2, taking it longer to kill all enemies and win
the game. It also decreases slightly for the Survivor (E1), from
992.57 to 971.6. The win rate decreases only slightly in both
cases (95% vs 100%, and 96% vs 98%, respectively). Despite
the drastic increase in the number of enemies, both agents can
still win the game most of the time. There is a slight change
in the trend of the stats for the rest of agents, but these are
not radically different when compared to the original level.

A. Results Summary
We observe a discrepancy in the resulting stats in agents

that have a direct or indirect a connection to the features
affected by the problem identified in the level. For example,
in Zelda, the Speed-runner (E2) and High explorer agents
(E3, E5) are directly affected by part of the level not being
accessible, making impossible to win the game. As a result,
they suffer a drastic change in the stats (Fig. 6). Similarly, the
High scorer (E1) and Low killer (E4) are indirectly affected
by the issues in the level, which also causes a change in their
stats. Unrelated agents still achieve similar results that fit the
expectations. Therefore, having a team of different agents help
identify issues in different aspects of the level.

IX. CONCLUSIONS AND FUTURE WORK

We present and implement an approach to generate a
team of agents with differentiated behaviours and identifiable

TABLE VI
Sheriff : PORTABILITY AND LEVEL TESTING RESULTS. EOG IS 1000.

7d 7h 7l 7p 7t ‘Broken‘
Total enemies 8 9 9 11 11 35
Total barrels 55 65 27 71 51 55

Survivor and low killer (E1)
Win rate 98% 99% 100% 99% 100% 96%

Kills 3.28 4.02 3.89 4.78 4.87 16.51
EoG 992.58 990.32 1000 991.82 1000 971.60

High killer and explorer (E2)
Exploration 97.89% 98.97% 99.01% 98.2% 99.55% 94.86%

Kills 6.96 7.95 7.96 9.91 10 32.73
High killer and low explorer (E3)

Exploration 15.33% 16.36% 15.26% 17.81% 15.96% 20.61%
Kills 6.95 7.93 8 9.95 10 32.11

Speed-runner (E4)
Win rate 100% 97% 98% 99% 100% 95%

EoG 364.75 360.53 363.59 417.71 418.7 650.20
Barrels shooter (E5)

Interactions 439.42 372.63 344.74 385.54 310.89 70.21
Kills 5.83 5.89 6.22 7.46 6.65 9.18
Hits 35.96 38.19 17.49 39.86 29.28 20.86

High curiosity and low interactions (E6)
Curiosity 95.77 101.81 73.46 99.92 89.47 75.2

Interactions 122.52 127.46 106.28 125.93 116.98 118.84

tasks that can be used to play the game automatically and,
ultimately, assist in the development and testing of games and
levels. In contrast to other solutions, the difference between
agents come from the combination of heuristics focused on
distinct goals related to play-styles: winning, exploring the
game, interacting with their elements, killing enemies or col-
lecting items; instead of updates on internal parameters of the
controller. The core of the agents do not change, and the goals
are provided externally, so these can be easily interchangeable
while maintaining the foundation of the algorithm. In addition,
we are interested in the results of the agents after playing
the game, instead of looking at replicating real players. We
look at the resulting stats to identify different behaviour-types,
who we do not expect to behave as human players would. We
design and implement a new parent heuristic that grants the
proposed diversity by the assignation of weights (encoding-
behaviour) to a list of goals. We apply the MAP-Elites algo-
rithm for the generation of the team, by randomly generating
and evolving these weights. It results in agents distributed in a
2-dimensional behavioural space from where we can identify
different behaviour-types based on their location. Each of these
behaviour-type agents would be expected to play the game
reaching particular outcomes.

We use the GVGAI Framework, so the heuristics imple-
mented are general within its supported games. This generality
allows to run experiments and demonstrate the use of the
approach in four games with different characteristics. We
differentiate between five sets of experiments, corresponding
to the games and goals enabled: B2, B3, Z5, D5 and S4. We
run the experiments with different pairs of features, generating
68 maps that result in a total of 124, 302, 486, 293 and 352
agents for each set, respectively. We present an interactive tool
that allows exploring the results and checking the details of
each of these agents. We include an experiment to test the
portability of the agents that would allow running them on
newly created levels or after modifications have been made on

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3241864

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 06,2023 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON GAMES 13

existing ones. For this experiment, we include 4 new levels
to each game with different characteristics. The final stats
obtained after playing each of the levels follow a similar
tendency for most of the agents, supporting the hypothesis
that virtually all the agents identified are portable between
levels because they are able to carry their strengths to new
ones. Therefore, they could be used to highlight issues when
the resulting stats do not match the expectations. We include
a preliminary work exploring this idea and use the behaviour-
type agents to test a ‘broken‘ level in each of the games. The
agents whose behaviour is directly or indirectly related to the
issue in the level suffer a variation in their resulting stats,
breaking the tendency found in the portability experiments.
On the contrary, those unrelated to the feature affected still
fulfill the expectations. We conclude that having a team with
a range of different behaviours related to different features in
the game should allow covering different type of cases and
issues. Consequently, the team of agents proposed could be
used for testing and enriched by defining and implementing
a further selection of heuristics that enable further behaviour
combinations for agent selection.

An important limitation to our approach is that, even when
we have shown that it is possible for these agents to operate
properly when there is changes in the levels, modifications in
the core dynamics of the game would require the heuristics
to be adjusted. Similarly, if new goals come up as part of the
iterative design process, new heuristics will need to be defined.
Furthermore, the approach defined to generate the team of
agents has been implemented with a search algorithm in a
general environment. Not every GVGP approach makes use
of a forward model, so integrating the methodology proposed
into a system without a forward model would require further
investigation. First, it would be needed to define and provide a
new diversification of behaviours adapted to its characteristics.
Once the heuristic diversification is defined for the new scope,
a similar approach followed for the generation of the agents
using the MAP-Elites could be followed, as it simply requires
a vector of weights that encode the behaviour. Therefore,
this approach could be implemented using methods that use
Reinforcement Learning and Quality-Diversity, such as [28].

The current approach has shown good performance in
simple GVGAI levels, but agents would need to be able to play
at a higher skill level to tackle more complex games, which
may require agents to deal with long-term planning, partial
observability, stochasticity and/or multiple players, among
others. However, the core contribution of this paper still stands;
a similar approach could be extended to more complex games
(3D), other types of games not based on avatars (e.g. strategy
games), or use multi-dimensional feature spaces. It should also
be possible to look beyond the manual design of levels of
a game and integrate the approach with Procedural Content
Generation (PCG) techniques to assist in their automated
generation. We believe that following the line of research
started by our work to fit different areas and types of GVGP
agents would allow adopting the approach in a more diverse
range of games and frameworks, ultimately being applicable
to the games industry and assisting on game development and
testing processes.

ACKNOWLEDGMENT

Work funded by the EPSRC CDT IGGI EP/L015846/1.

REFERENCES

[1] C. Guerrero-Romero, A. Louis, and D. Perez-Liebana, “Beyond Playing
to Win: Diversifying Heuristics for GVGAI,” in IEEE Conference on
Computational Intelligence and Games (CIG), 2017, pp. 118–125.

[2] C. Guerrero-Romero, S. M. Lucas, and D. Perez-Liebana, “Using a Team
of General AI Algorithms to Assist Game Design and Testing,” in IEEE
Conference on Computational Intelligence and Games, 2018, pp. 1–8.

[3] C. Guerrero-Romero and D. Perez-Liebana, “MAP-Elites to Generate
a Team of Agents that Elicits Diverse Automated Gameplay,” in IEEE
Conference on Games (CoG). IEEE, 2021, pp. 1–8.

[4] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1984.

[5] J. van Valburg, “Automated Testing and Profiling for Call of Duty,”
2018, GDC. [Online]. Available: {https://www.youtube.com/watch?v=
8d0wzyiikXM}

[6] R. Masella, “Automated Testing of Gameplay Features in ‘Sea of
Thieves‘,” 2019, GDC. [Online]. Available: {https://www.youtube.com/
watch?v=X673tOi8pU8}

[7] S. Ariyurek, A. Betin-Can, and E. Surer, “Automated video game testing
using synthetic and humanlike agents,” IEEE Transactions on Games,
vol. 13, no. 1, pp. 50–67, 2019.

[8] I. Zarembo, “Analysis of Artificial Intelligence Applications for Auto-
mated Testing of Video Games,” in ENVIRONMENT. TECHNOLOGIES.
RESOURCES. Proceedings of the International Scientific and Practical
Conference, vol. 2, 2019, pp. 170–174.

[9] A. M. Albaghajati and M. A. K. Ahmed, “Video Game Automated
Testing Approaches: An Assessment Framework,” IEEE Transactions
on Games (Early Access), pp. 1–15, 2020.

[10] R. Bartle, “Hearts, Clubs, Diamonds, Spades: Players who Suit MUDs,”
Journal of MUD research, vol. 1, no. 1, p. 19, 1996.

[11] N. Yee, “The Gamer Motivation Profile: What we Learned from 250,000
Gamers,” in Proceedings of the 2016 Annual Symposium on Computer-
Human Interaction in Play, 2016, pp. 2–2.

[12] A. Canossa and A. Drachen, “Patterns of Play: Play-Personas in User-
Centred Game Development.” in DiGRA Conference, 2009, pp. 5:1–10.

[13] C. Holmgård, M. C. Green, A. Liapis, and J. Togelius, “Automated
Playtesting with Procedural Personas through MCTS with Evolved
Heuristics,” IEEE Trans. on Games, vol. 11, no. 4, pp. 352–362, 2018.

[14] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A Survey of Monte Carlo Tree Search Methods,” IEEE Trans. on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 143–
192, 2012.

[15] P. L. P. de Woillemont, R. Labory, and V. Corruble, “Configurable Agent
With Reward As Input: A Play-Style Continuum Generation,” in IEEE
Conference on Games (CoG), 2021, pp. 1–8.

[16] A. Liapis, H. P. Martı́nez, J. Togelius, and G. N. Yannakakis, “Trans-
forming Exploratory Creativity with DeLeNoX,” in International Con-
ference on Computational Creativity, 2013, pp. 56–63.

[17] J.-B. Mouret and J. Clune, “Illuminating Search Spaces by Mapping
Elites,” arXiv preprint arXiv:1504.04909, pp. 1–15, 2015.

[18] M. C. Fontaine, J. Togelius, S. Nikolaidis, and A. K. Hoover,
“Covariance matrix adaptation for the rapid illumination of behavior
space,” CoRR, vol. abs/1912.02400, pp. 94–102, 2019. [Online].
Available: http://arxiv.org/abs/1912.02400

[19] A. Khalifa, S. Lee, A. Nealen, and J. Togelius, “Talakat: Bullet Hell
Generation through Constrained MAP-Elites,” in Proceedings of The
Genetic and Evolutionary Computation Conference, 2018, pp. 1047–
1054.

[20] A. Alvarez, S. Dahlskog, J. Font, and J. Togelius, “Empowering Quality
Diversity in Dungeon Design with Interactive Constrained MAP-Elites,”
in IEEE Conference on Games (CoG). IEEE, 2019, pp. 1–8.

[21] M. C. Fontaine, S. Lee, L. B. Soros, F. de Mesentier Silva, J. Togelius,
and A. K. Hoover, “Mapping Hearthstone Deck Spaces through Map-
Elites with Sliding Boundaries,” in Proceedings of The Genetic and
Evolutionary Computation Conference, 2019, pp. 161–169.

[22] I. Bravi and S. Lucas, “Rinascimento: Searching the Behaviour Space
of Splendor,” arXiv preprint arXiv:2106.08371, pp. 1–11, 2021.

[23] M. Balla, A. Barahona-Rıos, A. Katona et al., “Illuminating Game Space
Using MAP-Elites for Assisting Video Game Design,” in 11th AISB
Symposium on AI & Games (AI&G), 2021, pp. 1–6.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3241864

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 06,2023 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON GAMES 14

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Fig. 7. Screenshot of the levels used in the experiments at t=0. Left to right, the corresponding games are Butterflies, Zelda, Digdug and Sheriff. The first row
corresponds to the levels used to generate the team of agents (Section V), the levels in rows 2− 4 corresponds to diverse maps with different characteristics
used in the portability experiments (Section VII) and last row represents the levels used for the exploratory testing experiment (Section VIII).

[24] R. Canaan, J. Togelius, A. Nealen, and S. Menzel, “Diverse Agents for
Ad-Hoc Cooperation in Hanabi,” in IEEE Conference on Games (CoG).
IEEE, 2019, pp. 1–8.

[25] D. Perez-Liebana, C. Guerrero-Romero, A. Dockhorn, D. Jeurissen, and
L. Xu, “Generating Diverse and Competitive Play-Styles for Strategy
Games,” in IEEE Conference on Games (CoG), 2021, pp. 1–8.

[26] D. Perez-Liebana, J. Liu, A. Khalifa, R. D. Gaina, J. Togelius, and
S. M. Lucas, “General Video Game AI: A Multitrack Framework for
Evaluating agents, Games, and Content Generation Algorithms,” IEEE
Transactions on Games, vol. 11, no. 3, pp. 195–214, 2019.

[27] D. Perez Liebana, J. Dieskau, M. Hunermund, S. Mostaghim, and
S. Lucas, “Open loop Search for General Video Game Playing,” in Pro-
ceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, 2015, pp. 337–344.

[28] T. Pierrot, V. Macé, F. Chalumeau, A. Flajolet, G. Cideron, K. Beguir,
A. Cully, O. Sigaud, and N. Perrin-Gilbert, “Diversity policy gradient
for sample efficient quality-diversity optimization,” in ICLR Workshop
on Agent Learning in Open-Endedness, 2022, pp. 1075—-1083.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3241864

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on February 06,2023 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

