ARCIDUCA: Annotating Reference and Coreference In Dialogue Using Conversational Agents in games

Massimo Poesio
Queen Mary University
m.poesio@qmul.ac.uk

Richard Bartle
University of Essex
rabartle@essex.ac.uk

Jon Chamberlain
University of Essex
jchamb@essex.ac.uk

Julian Hough
Queen Mary University
j.hough@qmul.ac.uk

Chris Madge
Queen Mary University
c.j.madge@qmul.ac.uk

Diego Perez-Llebana
Queen Mary University
diego.perez@qmul.ac.uk

Matt Purver
Queen Mary University
m.purver@qmul.ac.uk

Juntao Yu
University of Essex
j.yu@essex.ac.uk

Abstract

The objective of **ARCIDUCA** is to address the twin challenge of developing conversational agents (CAs) able to deal with coreference and reference, and of creating datasets for training such agents, by having CAs generate through interaction the needed training data, which can then be used to improve those agents as well as train agents for other domains. A core hypothesis of the project is that the most effective way to motivate enough individuals to participate in such interactions is by embedding these interactions in online games-with-a-purpose.

1 Introduction

The development of architectures such as the encoder/decoder model (Sutskever et al., 2014) and the Transformer (Vaswani et al., 2017) has brought about an explosion of interest in neural architectures for conversational agents (CAs) (Vinyals and Le, 2015; Bordes et al., 2017; Zhang et al., 2018; Dinan et al., 2019b; Gao et al., 2019; Ram et al., 2018; Dinan et al., 2019a). CA research has since shifted towards CAs capable of engaging in more complex and task-oriented dialogue such as restaurant booking (Bordes et al., 2017) or question answering (Dhingra et al., 2017). The results on these tasks show that CAs carrying out more complex tasks require the ability to carry out more in-depth interpretation (Quan et al., 2019; Roller et al., 2020). Achieving this requires, on the one hand, architectures capable of carrying out such aspects of interpretation, typically incorporating models of dialogue memory and representations of task-specific knowledge (Sukhbaatar et al., 2015; Dinan et al., 2019b). On the other hand, training such models requires appropriate resources. Recently, a number of datasets have become available for end-to-end training of task-oriented CAs; these include the datasets available through ParlAI,1 Amazon’s MultiDOGO (Peskov et al., 2019) and Facebook’s Dialogue Decathlon (Shuster et al., 2020). However, none of these datasets is also annotated with information about the semantic and discourse interpretation of utterances required to train modules for these tasks.

The objective of **ARCIDUCA** is to develop conversational agents (CAs) able to deal with coreference and reference, and of creating datasets for training such agents, by having the CAs themselves generate through interaction the needed training data, which can then be used to improve those agents as well as train agents for other domains.

2 The approach

Datasets and Architectures for Coreference in Dialogue
Coreference is prevalent even in the shortest conversations (Müller, 2008; Quan et al., 2019; Grobol, 2020). However, current neural architectures for conversational agents mostly do not resolve coreference. Such CAs can only react appropriately when generating the correct response does not require understanding coreference. Part of the problem is that despite impressive recent improvements (Lee et al., 2017; Joshi et al., 2019), coreference research is still mostly focused on written text. This research gap is largely due to a lack of resources. Training a coreference resolver on written text and domain-adapting it to dialogue has proven ineffective, as coreference in dialogue involves different phenomena and is more involved than coreference in text (Müller, 2008; Grobol, 2020). But the largest annotated corpus of coreference in dialogue, the TRAINS subset of our own ARRAU corpus (Uryupina et al., 2020), is too small to train a high performance coreference resolver for CAs. One objective of the project is to create more substantial datasets to study the problem. Also, there is a need for CA architectures including specific modules that enable them to interpret coreference. Some such architectures have recently appeared, such as GECOR (Quan et al., 2019), based on a
copying architecture that solves coreference as an incomplete utterance restoration task. (Quan et al., 2019) showed that adding a coreference resolver to a task-oriented CA can substantially improve performance. In the project we will experiment with such architectures.

Games with a Purpose Games with a Purpose (GWAPs) (von Ahn, 2006) have emerged as an alternative to traditional micro-task crowdsourcing (Snow et al., 2008). GWAPs, particularly when run over large periods, can collect large amounts of annotations: e.g., our own Phrase Detectives (Poesio et al., 2013), designed to collect labels for coreference, accumulated over 5.7 million coreference judgments from more than 60,000 players over the last fifteen years; the third release of the corpus has now 400,000 markables, twice the number of ONTONOTES. But there is a fundamental difference between conversation and written text: the latter is designed to be read by third parties, whereas, e.g., (Clark and Schober, 1989) have shown that overhearers to a conversation only acquire a partial understanding of what was said.

Games and AI In recent years, games have become one of the most widely used platforms to test progress on machine learning-based AI agent theories (Silver et al., 2016). This progress became visible when DeepMind AlphaGo (Silver et al., 2016) mastered the GO game using a combination of Monte Carlo Tree Search and Deep Learning, but progress since has been accelerated through competitions such as General Video Game AI (Perez et al., 2019) and the development of platforms for rapid experimentation such as MALMO (Johnson et al., 2016) or Unity/ML (Juliani et al., 2018).

Collecting conversational data through conversational learning in games The dominant paradigm for CAS training discussed above (pre-training against an annotated corpus, followed by fine-tuning via reinforcement learning through interaction with other agents) is also the approach used in Game AI, which recently led to an exciting synergy between the two areas of AI, whereby Game AI platforms would be used to train conversational agents as well. One example of this synergy is the MALMO project at Microsoft (Johnson et al., 2016), a platform for training agents in Minecraft which was extended to allow training of conversational agents (Allison et al., 2018; Szlam et al., 2019). More recently, Hockenmaier’s group developed an extension of MALMO to allow conversational agents to learn to interact, and used the extension to introduce the Minecraft Collaborative Game Task (Narayan-Chen et al., 2019). In parallel with this, Facebook launched project LIGHT (Urbanek et al., 2019)—an open platform for collecting conversations in a very rich textual fantasy game with extensive crowdsourced resources entirely described in natural language. In ARCIDUCA, we aim to train conversational agents able to interpret coreference and reference by embedding them in LIGHT and the Minecraft Collaborative Game.

Collecting judgments through clarification questions The obvious way to enable a CA to acquire information about interpretation is by making it able to ask clarification questions (CQs) as to that interpretation (Purver et al., 2003). As far as we know, this has not yet been attempted for coreference, or for CAS. The one proposal along these lines we are aware of (Thomason et al., 2019) was developed to learn grounded reference for robots. What we propose to do is to adopt a similar strategy for improving conversational agents in games’ ability to interpret both references and coreference, but also recording these judgments in the form of an annotated corpus.

3 Progress so far

The project officially started in February 2022, but work started beginning of 2021 with the preparation of the CODI-CRAC 2021 shared task on anaphora resolution in dialogue (Khosla et al., 2021), a second edition of which is currently running. One of the outcomes of this work is the creation of the CODI-CRAC corpus of anaphoric reference in dialogue, covering four well-known domains including AMI, LIGHT, PERSUASION and SWITCHBOARD, and is currently the largest such dataset for English. A second outcome of the shared task has been the development of the Universal Anaphora scorer (Yu et al., 2022), currently being revised to make it more suitable to score coreference in dialogue, e.g., by allowing for discontinuous markables. Next work was fine-tuning of a coreference resolver for the LIGHT domain and its incorporation in a conversational agent for the LIGHT domain based on the poly-encoder architecture from (Humeau et al., 2020).
Acknowledgements

ARCIDUCA is funded by EPSRC, EP/W001632/1. The creation of the CODI-CRAC corpus was funded in part by the DALLI project (ERC project 695662), in part by HITS Heidelberg (Michael Strube), in part by funding from CMU (Carolyn Rose and Lori Levin).

References

J. Quan, D. Xiong, B. Webber, and C. Hu. 2019. GECOR: An end-to-end generative ellipsis and coreference resolution model for ... In *Proc. of EMNLP*, Hong Kong. ACL.

Ashwin Ram, Rohit Prasad, Chandra Khatri, Anu Venkatesh, Raefer Gabriel, Qing Liu, Jeff Nunn, Behnam Hedayatnia, Ming Cheng, Ashish Nagar, Eric King, Kate Bland, Amanda Wartick, Yi Pan, Han Song, Sk Jayadevan, Gene Hwang, and Art Petrigru. 2018. *Conversational AI: The science behind the Alexa Prize*. ArXiv abs/1801.03604.

